Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
J Physiol ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39165238

ABSTRACT

The exercise pressor reflex (EPR) is exaggerated in type 2 diabetes mellitus (T2DM), but the underlying central nervous system aberrations have not been fully delineated. Stimulation of muscle afferents within working skeletal muscle activates the EPR, by sending information to neurons in the brainstem, where it is integrated and results in reflexively increased mean arterial pressure (MAP) and sympathetic nerve activity. Brain insulin is known to regulate neural activity within the brainstem. We hypothesize that brain insulin injection in T2DM rats attenuates the augmented EPR, and that T2DM is associated with decreased brain insulin. Using male Sprague-Dawley rats, T2DM and control rats were generated via an induction protocol with two low doses of streptozotocin (35 and 25 mg/kg, i.p.) in combination with a 14-23-week high-fat diet or saline injections and a low-fat diet, respectively. After decerebration, MAP and renal sympathetic nerve activity (RSNA) were evaluated during EPR stimulation, evoked by electrically induced muscle contraction via ventral root stimulation, before and after (1 and 2 h post) intracerebroventricular (i.c.v.) insulin microinjections (500 mU, 50 nl). i.c.v. insulin decreased peak MAP (ΔMAP Pre (36 ± 14 mmHg) vs. 1 h (21 ± 14 mmHg) vs. 2 h (11 ± 6 mmHg), P < 0.05) and RSNA (ΔRSNA Pre (107.5 ± 40%), vs. 1 h (75.4 ± 46%) vs. 2 h (51 ± 35%), P < 0.05) responses in T2DM, but not controls. In T2DM rats, cerebrospinal fluid insulin was decreased (0.41 ± 0.19 vs. 0.11 ± 0.05 ng/ml, control (n = 14) vs. T2DM (n = 4), P < 0.01). The results demonstrated that insulin injections into the brain normalized the augmented EPR in brain hypoinsulinaemic T2DM rats, indicating that the EPR can be regulated by brain insulin. KEY POINTS: The reflexive increase in blood pressure and sympathetic nerve activity mediated by the autonomic nervous system during muscle contractions is also known as the exercise pressor reflex. The exercise pressor reflex is dangerously augmented in type 2 diabetes, in both rats and humans. In type 2 diabetic rats both cerebrospinal fluid insulin and phosphoinositide 3-kinase signalling within cardiovascular brainstem neurons decrease in parallel. Brain insulin injections decrease the magnitude of the reflexive pressor and sympathetic responses to hindlimb muscle contraction in type 2 diabetic rats. Partial correction of low insulin within the central nervous system in type 2 diabetes may treat aberrant exercise pressor reflex function.

2.
BMC Med Genomics ; 16(1): 259, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875944

ABSTRACT

BACKGROUND: More than 200 asthma-associated genetic variants have been identified in genome-wide association studies (GWASs). Expression quantitative trait loci (eQTL) data resources can help identify causal genes of the GWAS signals, but it can be difficult to find an eQTL that reflects the disease state because most eQTL data are obtained from normal healthy subjects. METHODS: We performed a blood eQTL analysis using transcriptomic and genotypic data from 433 Korean asthma patients. To identify asthma-related genes, we carried out colocalization, Summary-based Mendelian Randomization (SMR) analysis, and Transcriptome-Wide Association Study (TWAS) using the results of asthma GWASs and eQTL data. In addition, we compared the results of disease eQTL data and asthma-related genes with two normal blood eQTL data from Genotype-Tissue Expression (GTEx) project and a Japanese study. RESULTS: We identified 340,274 cis-eQTL and 2,875 eGenes from asthmatic eQTL analysis. We compared the disease eQTL results with GTEx and a Japanese study and found that 64.1% of the 2,875 eGenes overlapped with the GTEx eGenes and 39.0% with the Japanese eGenes. Following the integrated analysis of the asthmatic eQTL data with asthma GWASs, using colocalization and SMR methods, we identified 15 asthma-related genes specific to the Korean asthmatic eQTL data. CONCLUSIONS: We provided Korean asthmatic cis-eQTL data and identified asthma-related genes by integrating them with GWAS data. In addition, we suggested these asthma-related genes as therapeutic targets for asthma. We envisage that our findings will contribute to understanding the etiological mechanisms of asthma and provide novel therapeutic targets.


Subject(s)
Asthma , Genome-Wide Association Study , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Asthma/genetics , Gene Expression Profiling , Republic of Korea , Polymorphism, Single Nucleotide
3.
FASEB J ; 37(9): e23141, 2023 09.
Article in English | MEDLINE | ID: mdl-37566482

ABSTRACT

Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 µM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.


Subject(s)
Insulins , Solitary Nucleus , Rats , Male , Animals , Solitary Nucleus/physiology , Receptor, Insulin/metabolism , Reflex , Baroreflex/physiology , Blood Pressure/physiology , Insulins/metabolism
4.
Mol Cancer Ther ; 22(9): 1100-1111, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37440705

ABSTRACT

As a result of tumor heterogeneity and solid cancers harboring multiple molecular defects, precision medicine platforms in oncology are most effective when both genetic and pharmacologic determinants of a tumor are evaluated. Expandable patient-derived xenograft (PDX) mouse tumor and corresponding PDX culture (PDXC) models recapitulate many of the biological and genetic characteristics of the original patient tumor, allowing for a comprehensive pharmacogenomic analysis. Here, the somatic mutations of 23 matched patient tumor and PDX samples encompassing four cancers were first evaluated using next-generation sequencing (NGS). 19 antitumor agents were evaluated across 78 patient-derived tumor cultures using clinically relevant drug exposures. A binarization threshold sensitivity classification determined in culture (PDXC) was used to identify tumors that best respond to drug in vivo (PDX). Using this sensitivity classification, logic models of DNA mutations were developed for 19 antitumor agents to predict drug response. We determined that the concordance of somatic mutations across patient and corresponding PDX samples increased as variant allele frequency increased. Notable individual PDXC responses to specific drugs, as well as lineage-specific drug responses were identified. Robust responses identified in PDXC were recapitulated in vivo in PDX-bearing mice and logic modeling determined somatic gene mutation(s) defining response to specific antitumor agents. In conclusion, combining NGS of primary patient tumors, high-throughput drug screen using clinically relevant doses, and logic modeling, can provide a platform for understanding response to therapeutic drugs targeting cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Animals , Mice , Xenograft Model Antitumor Assays , Pharmacogenomic Testing , Neoplasms/drug therapy , Neoplasms/genetics , Antineoplastic Agents/pharmacology , Mutation
5.
Clin Transl Allergy ; 13(7): e12282, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37488738

ABSTRACT

BACKGROUND: The extent of differences between genetic risks associated with various asthma subtypes is still unknown. To better understand the heterogeneity of asthma, we employed an unsupervised method to identify genetic variants specifically associated with asthma subtypes. Our goal was to gain insight into the genetic basis of asthma. METHODS: In this study, we utilized the UK Biobank dataset to select asthma patients (All asthma, n = 50,517) and controls (n = 283,410). We excluded 14,431 individuals who had no information on predicted values of forced expiratory volume in one second percent (FEV1%) and onset age, resulting in a final total of 36,086 asthma cases. We conducted k-means clustering based on asthma onset age and predicted FEV1% using these samples (n = 36,086). Cluster-specific genome-wide association studies were then performed, and heritability was estimated via linkage disequilibrium score regression. To further investigate the pathophysiology, we conducted eQTL analysis with GTEx and gene-set enrichment analysis with FUMA. RESULTS: Clustering resulted in four distinct clusters: early onset asthmanormalLF (early onset with normal lung function, n = 8172), early onset asthmareducedLF (early onset with reduced lung function, n = 8925), late-onset asthmanormalLF (late-onset with normal lung function, n = 12,481), and late-onset asthmareducedLF (late-onset with reduced lung function, n = 6508). Our GWASs in four clusters and in All asthma sample identified 5 novel loci, 14 novel signals, and 51 cluster-specific signals. Among clusters, early onset asthmanormalLF and late-onset asthmareducedLF were the least correlated (rg  = 0.37). Early onset asthmareducedLF showed the highest heritability explained by common variants (h2  = 0.212) and was associated with the largest number of variants (71 single nucleotide polymorphisms). Further, the pathway analysis conducted through eQTL and gene-set enrichment analysis showed that the worsening of symptoms in early onset asthma correlated with lymphocyte activation, pathogen recognition, cytokine receptor activation, and lymphocyte differentiation. CONCLUSIONS: Our findings suggest that early onset asthmareducedLF was the most genetically predisposed cluster, and that asthma clusters with reduced lung function were genetically distinct from clusters with normal lung function. Our study revealed the genetic variation between clusters that were segmented based on onset age and lung function, providing an important clue for the genetic mechanism of asthma heterogeneity.

6.
Sci Rep ; 13(1): 9573, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37311821

ABSTRACT

While a wide range of treatments, including medical therapies and surgery, are used to manage endometriosis, the characteristics and treatment status of patients who received these treatments have not been investigated in Korea. This study analyzed the Korean Health Insurance Review & Assessment Service-National Patient Sample (HIRA-NPS) data from 2010 to 2019 with 7530 patients diagnosed with endometriosis. Annual trends in the types of visit and surgery, medication prescriptions and associated costs were investigated. The analysis showed that surgery slightly decreased among the types of utilized healthcare services (2010: 16.3, 2019: 12.7), dienogest prescription rapidly increased due to national health insurance coverage from 2013 (2013: 12.1, 2019: 36.0), and the use of gonadotrophin-releasing hormone analogues decreased (2010: 33.6, 2019: 16.4). There was no significant change in total and outpatient costs per person over time. Regarding endometriosis treatment, conservative treatment mainly based on prescribed medications has been gradually replacing surgery. Particularly, the listing of dienogest for national health insurance coverage might have affected the trend. However, there were no significant changes in terms of total and medication costs per person.


Subject(s)
Endometriosis , Female , Humans , Endometriosis/drug therapy , Endometriosis/epidemiology , Republic of Korea/epidemiology , Conservative Treatment , Drug Prescriptions , Insurance, Health
7.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R13-R20, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37067428

ABSTRACT

Skeletal muscle reflexes play a crucial role in determining the magnitude of the cardiovascular response to exercise. However, evidence supporting an association between the magnitude of the pressor response and the velocity of muscle deformation has remained to be elucidated. Thus, we investigated the impact of different muscle deformation rates on the neural discharge of muscle afferents and pressor and sympathetic responses in Sprague-Dawley rats. In an ex vivo muscle-nerve preparation, action potentials elicited by sinusoidal mechanical stimuli (137 mN) at different frequencies (0.01, 0.05, 0.1, 0.2, and 0.25 Hz) were recorded in mechanosensitive group III and IV fibers. The afferent response magnitude to sine-wave stimulation significantly varied at different frequencies (ANOVA, P = 0.01). Specifically, as compared with 0.01 Hz (0.83 ± 0.96 spikes/s), the response magnitudes were significantly greater at 0.20 Hz (4.07 ± 5.04 spikes/s, P = 0.031) and 0.25 Hz (4.91 ± 5.30 spikes/s, P = 0.014). In an in vivo decerebrated rat preparation, renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch (1 kg) of hindlimb skeletal muscle at different velocities of loading (slow, medium, and fast) were measured. Pressor responses to passive stretch were significantly associated with the velocity of muscle deformation (ANOVA, P < 0.001). The MAP response to fast stretch (Δ 56 ± 12 mmHg) was greater than slow (Δ 33 ± 11 mmHg, P = 0.006) or medium (Δ 30 ± 11 mmHg, P < 0.001) stretch. Likewise, the RSNA response was related to deformation velocity (ANOVA, P = 0.024). These findings suggest that the muscle neural afferent discharge and the cardiovascular response to mechanical stimulation are associated with muscle deformation velocity.


Subject(s)
Muscle Contraction , Patient Discharge , Rats , Animals , Humans , Rats, Sprague-Dawley , Muscle Contraction/physiology , Reflex/physiology , Muscle, Skeletal/innervation , Blood Pressure/physiology
8.
J Physiol ; 601(8): 1407-1424, 2023 04.
Article in English | MEDLINE | ID: mdl-36869605

ABSTRACT

Mechanical distortion of working skeletal muscle induces sympathoexcitation via thin fibre afferents, a reflex response known as the skeletal muscle mechanoreflex. However, to date, the receptor ion channels responsible for mechanotransduction in skeletal muscle remain largely undetermined. Transient receptor potential vanilloid 4 (TRPV4) is known to sense mechanical stimuli such as shear stress or osmotic pressure in various organs. It is hypothesized that TRPV4 in thin-fibre primary afferents innervating skeletal muscle is involved in mechanotransduction. Fluorescence immunostaining revealed that 20.1 ± 10.1% of TRPV4 positive neurons were small dorsal root ganglion (DRG) neurons that were DiI-labelled, and among them 9.5 ± 6.1% of TRPV4 co-localized with the C-fibre marker peripherin. In vitro whole-cell patch clamp recordings from cultured rat DRG neurons demonstrated that mechanically activated current amplitude was significantly attenuated after the application of the TRPV4 antagonist HC067047 compared to control (P = 0.004). Such reductions were also observed in single-fibre recordings from a muscle-nerve ex vivo preparation where HC067047 significantly decreased afferent discharge to mechanical stimulation (P = 0.007). Likewise, in an in vivo decerebrate rat preparation, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch of hindlimb muscle were significantly reduced by intra-arterial injection of HC067047 (ΔRSNA: P = 0.019, ΔMAP: P = 0.002). The findings suggest that TRPV4 plays an important role in mechanotransduction contributing to the cardiovascular responses evoked by the skeletal muscle mechanoreflex during exercise. KEY POINTS: Although a mechanical stimulus to skeletal muscle reflexively activates the sympathetic nervous system, the receptors responsible for mechanotransduction in skeletal muscle thin fibre afferents have not been fully identified. Evidence suggests that TRPV4 is a mechanosensitive channel that plays an important role in mechanotransduction within various organs. Immunocytochemical staining demonstrates that TRPV4 is expressed in group IV skeletal muscle afferents. In addition, we show that the TRPV4 antagonist HC067047 decreases the responsiveness of thin fibre afferents to mechanical stimulation at the muscle tissue level as well as at the level of dorsal root ganglion neurons. Moreover, we demonstrate that intra-arterial HC067047 injection attenuates the sympathetic and pressor responses to passive muscle stretch in decerebrate rats. These data suggest that antagonism of TRPV4 attenuates mechanotransduction in skeletal muscle afferents. The present study demonstrates a probable physiological role for TRPV4 in the regulation of mechanical sensation in somatosensory thin fibre muscle afferents.


Subject(s)
TRPV Cation Channels , Transient Receptor Potential Channels , Rats , Animals , TRPV Cation Channels/metabolism , Rats, Sprague-Dawley , Mechanotransduction, Cellular , Muscle, Skeletal/physiology , Reflex/physiology , Muscle Contraction/physiology , Blood Pressure/physiology
9.
Commun Biol ; 6(1): 324, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966243

ABSTRACT

Gene-environment (G×E) interaction could partially explain missing heritability in traits; however, the magnitudes of G×E interaction effects remain unclear. Here, we estimate the heritability of G×E interaction for body mass index (BMI) by subjecting genome-wide interaction study data of 331,282 participants in the UK Biobank to linkage disequilibrium score regression (LDSC) and linkage disequilibrium adjusted kinships-software for estimating SNP heritability from summary statistics (LDAK-SumHer) analyses. Among 14 obesity-related lifestyle factors, MET score, pack years of smoking, and alcohol intake frequency significantly interact with genetic factors in both analyses, accounting for the partial variance of BMI. The G×E interaction heritability (%) and standard error of these factors by LDSC and LDAK-SumHer are as follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake frequency, 0.32% (0.10) and 0.80% (0.17), respectively. Moreover, these three factors are partially validated for their interactions with genetic factors in other obesity-related traits, including waist circumference, hip circumference, waist-to-hip ratio adjusted with BMI, and body fat percentage. Our results suggest that G×E interaction may partly explain the missing heritability in BMI, and two G×E interaction loci identified could help in understanding the genetic architecture of obesity.


Subject(s)
Gene-Environment Interaction , Obesity , Humans , Body Mass Index , Obesity/genetics , Phenotype , Smoking/genetics
10.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R497-R512, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36779670

ABSTRACT

Stimulation of the mesencephalic locomotor region elicits exaggerated sympathetic nerve and pressor responses in spontaneously hypertensive rats (SHR) as compared with normotensive Wistar-Kyoto rats (WKY). This suggests that central command or its influence on vasomotor centers is augmented in hypertension. The decerebrate animal model possesses an ability to evoke intermittent bouts of spontaneously occurring motor activity (SpMA) and generates cardiovascular responses associated with the SpMA. It remains unknown whether the changes in sympathetic nerve activity and hemodynamics during SpMA are altered by hypertension. To test the hypothesis that the responses in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) during SpMA are exaggerated with hypertension, this study aimed to compare the responses in decerebrate, paralyzed SHR, WKY, and normotensive Sprague-Dawley (SD) rats. In all strains, an abrupt increase in RSNA occurred in synchronization with tibial motor discharge (an index of motor activity) and was followed by rises in MAP and heart rate. The centrally evoked increase in RSNA and MAP during SpMA was much greater (306 ± 110%) in SHR than WKY (187 ± 146%) and SD (165 ± 44%). Although resting baroreflex-mediated changes in RSNA were not different across strains, mechanically or pharmacologically induced elevations in MAP attenuated or abolished the RSNA increase during SpMA in WKY and SD but had no effect in SHR. It is likely that the exaggerated sympathetic nerve and pressor responses during SpMA in SHR are induced along a central command pathway independent of the arterial baroreflex and/or result from central command-induced inhibition of the baroreflex.


Subject(s)
Blood Pressure , Hypertension , Kidney , Motor Activity , Sympathetic Nervous System , Sympathetic Nervous System/physiopathology , Kidney/innervation , Kidney/physiopathology , Animals , Rats , Hypertension/physiopathology , Vasoconstriction , Rats, Inbred SHR , Rats, Inbred WKY , Arteries , Rats, Sprague-Dawley , Heart Rate , Baroreflex
11.
Front Genet ; 13: 1025568, 2022.
Article in English | MEDLINE | ID: mdl-36419825

ABSTRACT

Globally, more than 1.9 billion adults are overweight. Thus, obesity is a serious public health issue. Moreover, obesity is a major risk factor for diabetes mellitus, coronary heart disease, and cardiovascular disease. Recently, GWAS examining obesity and body mass index (BMI) have increasingly unveiled many aspects of the genetic architecture of obesity and BMI. Information on genome-wide genetic variants has been used to estimate the genome-wide polygenic score (GPS) for a personalized prediction of obesity. However, the prediction power of GPS is affected by various factors, including the unequal variance in the distribution of a phenotype, known as heteroscedasticity. Here, we calculated a GPS for BMI using LDpred2, which was based on the BMI GWAS summary statistics from a European meta-analysis. Then, we tested the GPS in 354,761 European samples from the UK Biobank and found an effective prediction power of the GPS on BMI. To study a change in the variance of BMI, we investigated the heteroscedasticity of BMI across the GPS via graphical and statistical methods. We also studied the homoscedastic samples for BMI compared to the heteroscedastic sample, randomly selecting samples with various standard deviations of BMI residuals. Further, we examined the effect of the genetic interaction of GPS with environment (GPS×E) on the heteroscedasticity of BMI. We observed the changing variance (i.e., heteroscedasticity) of BMI along the GPS. The heteroscedasticity of BMI was confirmed by both the Breusch-Pagan test and the Score test. Compared to the heteroscedastic sample, the homoscedastic samples from small standard deviation of BMI residuals showed a decreased heteroscedasticity and an improved prediction accuracy, suggesting a quantitatively negative correlation between the phenotypic heteroscedasticity and the prediction accuracy of GPS. To further test the effects of the GPS×E on heteroscedasticity, first we tested the genetic interactions of the GPS with 21 environments and found 8 significant GPS×E interactions on BMI. However, the heteroscedasticity of BMI was not ameliorated after adjusting for the GPS×E interactions. Taken together, our findings suggest that the heteroscedasticity of BMI exists along the GPS and is not affected by the GPS×E interaction.

12.
Front Genet ; 13: 970657, 2022.
Article in English | MEDLINE | ID: mdl-36276968

ABSTRACT

Obesity is a major public health concern, and its prevalence generally increases with age. As the number of elderly people is increasing in the aging population, the age-dependent increase in obesity has raised interest in the underlying mechanism. To understand the genetic basis of age-related increase in obesity, we identified genetic variants showing age-dependent differential effects on obesity. We conducted stratified analyses between young and old groups using genome-wide association studies of 355,335 United Kingom Biobank participants for five obesity-related phenotypes, including body mass index, body fat percentage, waist-hip ratio, waist circumference, and hip circumference. Using t-statistic, we identified five significant lead single nucleotide polymorphisms: rs2258461 with body mass index, rs9861311 and rs429358 with body fat percentage, rs2870099 with waist-hip ratio, and rs145500243 with waist circumference. Among these single nucleotide polymorphisms, rs429358, located in APOE gene was associated with diverse age-related diseases, such as Alzheimer's disease, coronary artery disease, age-related degenerative macular diseases, and cognitive decline. The C allele of rs429358 gradually decreases body fat percentage as one grows older in the range of 40-69 years. In conclusion, we identified five genetic variants with differential effects on obesity-related phenotypes based on age using a stratified analysis between young and old groups, which may help to elucidate the mechanisms by which age influences the development of obesity.

13.
Lifestyle Genom ; 15(3): 87-97, 2022.
Article in English | MEDLINE | ID: mdl-35793639

ABSTRACT

INTRODUCTION: Although many studies have investigated the association between smoking and obesity, very few have analyzed how obesity traits are affected by interactions between genetic factors and smoking. Here, we aimed to identify the loci that affect obesity traits via smoking status-related interactions in European samples. METHODS: We performed stratified analysis based on the smoking status using both the UK Biobank (UKB) data (N = 334,808) and the Genetic Investigation of ANthropometric Traits (GIANT) data (N = 210,323) to identify gene-smoking interaction for obesity traits. We divided the UKB subjects into two groups, current smokers and nonsmokers, based on the smoking status, and performed genome-wide association study (GWAS) for body mass index (BMI), waist circumference adjusted for BMI (WCadjBMI), and waist-hip ratio adjusted for BMI (WHRadjBMI) in each group. And then we carried out the meta-analysis using both GWAS summary statistics of UKB and GIANT for BMI, WCadjBMI, and WHRadjBMI and computed the stratified p values (pstratified) based on the differences between meta-analyzed estimated beta coefficients with standard errors in each group. RESULTS: We identified four genome-wide significant loci in interactions with the smoking status (pstratified < 5 × 10-8): rs336396 (INPP4B) and rs12899135 (near CHRNB4) for BMI, and rs998584 (near VEGFA) and rs6916318 (near RSPO3) for WHRadjBMI. Moreover, we annotated the biological functions of the SNPs using expression quantitative trait loci (eQTL) and GWAS databases, along with publications, which revealed possible mechanisms underlying the association between the smoking status-related genetic variants and obesity. CONCLUSIONS: Our findings suggest that obesity traits can be modified by the smoking status via interactions with genetic variants through various biological pathways.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Obesity/epidemiology , Obesity/genetics , Smoking/epidemiology , Smoking/genetics , Waist-Hip Ratio
14.
Front Neurosci ; 16: 726467, 2022.
Article in English | MEDLINE | ID: mdl-35651628

ABSTRACT

Hypertension is a main cause of death in the United States with more than 103 million adults affected. While pharmacological treatments are effective, blood pressure (BP) remains uncontrolled in 50-60% of resistant hypertensive subjects. Using a custom-wired miniature electrode, we previously reported that deep peroneal nerve stimulation (DPNS) elicited acute cardiovascular depressor responses in anesthetized spontaneously hypertensive rats (SHRs). Here, we further study this effect by implementing a wireless system and exploring different stimulation parameters to achieve a maximum depressor response. Our results indicate that DPNS consistently induces a reduction in BP and suggests that renal sympathetic nerve activity (RSNA) is altered by this bioelectronic treatment. To test the acute effect of DPNS in awake animals, we developed a novel miniaturized wireless microchannel electrode (w-µCE), with a Z-shaped microchannel through which the target nerves slide and lock into the recording/stimulation chamber. Animals implanted with w-µCE and BP telemetry systems for 3 weeks showed an average BP of 150 ± 14 mmHg, which was reduced significantly by an active DPNS session to 135 ± 8 mmHg (p < 0.04), but not in sham-treated animals. The depressor response in animals with an active w-µCE was progressively returned to baseline levels 14 min later (164 ± 26 mmHg). This depressor response was confirmed in restrained fully awake animals that received DPNS for 10 days, where tail-cuff BP measurements showed that systolic BP in SHR lowered 10% at 1 h and 16% 2 h after the DPNS when compared to the post-implantation baseline. Together, these results support the use of DPN neuromodulation as a possible strategy to lower BP in drug-resistant hypertension.

15.
Hypertension ; 79(8): 1824-1834, 2022 08.
Article in English | MEDLINE | ID: mdl-35652337

ABSTRACT

BACKGROUND: SGLT2i (sodium-glucose cotransporter 2 inhibitor), a class of anti-diabetic medications, is shown to reduce blood pressure (BP) in hypertensive patients with type 2 diabetes. Mechanisms underlying this action are unknown but SGLT2i-induced sympathoinhibition is thought to play a role. Whether SGLT2i reduces BP and sympathetic nerve activity (SNA) in a nondiabetic prehypertension model is unknown. METHODS: Accordingly, we assessed changes in conscious BP using radiotelemetry and alterations in mean arterial pressure and renal SNA during simulated exercise in nondiabetic spontaneously hypertensive rats during chronic administration of a diet containing dapagliflozin (0.5 mg/kg per day) versus a control diet. RESULTS: We found that dapagliflozin had no effect on fasting blood glucose, insulin, or hemoglobin A1C levels. However, dapagliflozin reduced BP in young (8-week old) spontaneously hypertensive rats as well as attenuated the age-related rise in BP in adult spontaneously hypertensive rat up to 17-weeks of age. The rises in mean arterial pressure and renal SNA during simulated exercise (exercise pressor reflex activation by hindlimb muscle contraction) were significantly reduced after 4 weeks of dapagliflozin (Δmean arterial pressure: 10±7 versus 25±14 mm Hg, Δrenal SNA: 31±17% versus 68±39%, P<0.05). Similarly, rises in mean arterial pressure and renal SNA during mechanoreflex stimulation by passive hindlimb stretching were also attenuated by dapagliflozin. Heart weight was significantly decreased in dapagliflozin compared with the control group. CONCLUSIONS: These data demonstrate a novel role for SGLT2i in reducing resting BP as well as the activity of skeletal muscle reflexes, independent of glycemic control. Our study may have important clinical implications for preventing hypertension and hypertensive heart disease in young prehypertensive individuals.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Animals , Benzhydryl Compounds , Blood Pressure/physiology , Glucosides , Hypertension/drug therapy , Muscle Contraction/physiology , Rats , Rats, Inbred SHR , Sympathetic Nervous System
16.
Front Genet ; 13: 765502, 2022.
Article in English | MEDLINE | ID: mdl-35432474

ABSTRACT

Asthma is among the most common chronic diseases worldwide, creating a substantial healthcare burden. In late-onset asthma, there are wide global differences in asthma prevalence and low genetic heritability. It has been suggested as evidence for genetic susceptibility to asthma triggered by exposure to multiple environmental factors. Very few genome-wide interaction studies have identified gene-environment (G×E) interaction loci for asthma in adults. We evaluated genetic loci for late-onset asthma showing G×E interactions with multiple environmental factors, including alcohol intake, body mass index, insomnia, physical activity, mental status, sedentary behavior, and socioeconomic status. In gene-by-single environment interactions, we found no genome-wide significant single-nucleotide polymorphisms. However, in the gene-by-multi-environment interaction study, we identified three novel and genome-wide significant single-nucleotide polymorphisms: rs117996675, rs345749, and rs17704680. Bayes factor analysis suggested that for rs117996675 and rs17704680, body mass index is the most relevant environmental factor; for rs345749, insomnia and alcohol intake frequency are the most relevant factors in the G×E interactions of late-onset asthma. Functional annotations implicate the role of these three novel loci in regulating the immune system. In addition, the annotation for rs117996675 supports the body mass index as the most relevant environmental factor, as evidenced by the Bayes factor value. Our findings help to understand the role of the immune system in asthma and the role of environmental factors in late-onset asthma through G×E interactions. Ultimately, the enhanced understanding of asthma would contribute to better precision treatment depending on personal genetic and environmental information.

17.
Genet Epidemiol ; 46(5-6): 285-302, 2022 07.
Article in English | MEDLINE | ID: mdl-35481584

ABSTRACT

Type 2 diabetes (T2D) is caused by genetic and environmental factors as well as gene-environment interactions. However, these interactions have not been systematically investigated. We analyzed these interactions for T2D and fasting glucose levels in three Korean cohorts, HEXA, KARE, and CAVAS, using the baseline data with a multiple regression model. Two polygenic risk scores for T2D (PRST2D ) and fasting glucose (PRSFG ) were calculated using 488 and 82 single nucleotide polymorphisms (SNP) for T2D and fasting glucose, respectively, which were extracted from large-scaled genome-wide association studies with multiethnic data. Both lifestyle risk factors and T2D-related biochemical measurements were assessed. The effect of interactions between PRST2D -triglyceride (TG) and PRST2D -total cholesterol (TC) on fasting glucose levels was observed as follows: ß ± SE = 0.0005 ± 0.0001, p = 1.06 × 10-19 in HEXA, ß ± SE = 0.0008 ± 0.0001, p = 2.08 × 10-8 in KARE for TG; ß ± SE = 0.0006 ± 0.0001, p = 2.00 × 10-6 in HEXA, ß ± SE = 0.0020 ± 0.0004, p = 2.11 × 10-6 in KARE, ß ± SE = 0.0007 ± 0.0004, p = 0.045 in CAVAS for TC. PRST2D -based classification of the participants into four groups showed that the fasting glucose levels in groups with higher PRST2D were more adversely affected by both the TG and TC. In conclusion, blood TG and TC levels may affect the fasting glucose level through interaction with T2D genetic factors, suggesting the importance of consideration of gene-environment interaction in the preventive medicine of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Blood Glucose/genetics , Cholesterol , Diabetes Mellitus, Type 2/genetics , Fasting , Gene-Environment Interaction , Genome-Wide Association Study , Glucose , Humans , Models, Genetic , Polymorphism, Single Nucleotide , Republic of Korea , Risk Factors , Triglycerides
18.
J Craniofac Surg ; 33(4): 1170-1173, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-34930879

ABSTRACT

PURPOSE: As sports have become more diverse and demanding, the number of patients with a maxillofacial injury accompanied by a cranial injury or neurological symptoms has increased. This study examined the correlation between sports-related maxillofacial injuries and head injuries. PATIENTS AND METHODS: Among the patients who visited the emergency department of Pusan National University Dental Hospital due to a maxillofacial injury from sporting activities between 2014 and 2018, those who additionally had head injuries were retrospectively examined. Sporting activities were classified according to the American Academy of Pediatrics classification, and severity of injuries was determined using the Facial Injury Severity Scale (FISS). Patients whose medical records showed neurological symptoms and who underwent brain computed tomography for concomitant head injury were selected. The association between each of these variables, including age and gender, was statistically analyzed. RESULTS: A total of 95 patients were included in this study, most of whom were male teenagers, and cycling was the most common cause of injuries. The meanFISS score was 0.79. Brain computed tomography was conducted for 91 patients, and 28 patients reported neurological symptoms. Only 11 patients underwent advanced evaluation in the neurology or neurosurgery department. Most patients were diagnosed with contusion and concussion and were monitored without any treatment. CONCLUSIONS: Higher FISS values did not reflect the severity of maxillofacial and head injury. In this study, there were some patients with cranial fracture and cerebral hemorrhage with mild neurosurgical symptoms of facial trauma. Although the incidence of head trauma is not high, the necessity of wearing protective equipment cannot be overemphasized because severe trauma is permanent. Neurological signs and symptoms of patients with maxillofacial trauma should not be overlooked and require a thorough evaluation.


Subject(s)
Brain Concussion , Craniocerebral Trauma , Maxillofacial Injuries , Sports , Adolescent , Brain Concussion/diagnostic imaging , Brain Concussion/epidemiology , Brain Concussion/etiology , Child , Craniocerebral Trauma/diagnostic imaging , Craniocerebral Trauma/epidemiology , Craniocerebral Trauma/etiology , Female , Humans , Male , Maxillofacial Injuries/diagnostic imaging , Maxillofacial Injuries/epidemiology , Maxillofacial Injuries/etiology , Retrospective Studies
19.
J Physiol ; 600(3): 531-545, 2022 02.
Article in English | MEDLINE | ID: mdl-34967443

ABSTRACT

Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.


Subject(s)
Capsaicin , Ganglia, Spinal , Animals , Capsaicin/pharmacology , Ganglia, Spinal/physiology , Insulin/pharmacology , Mice , Muscle Fibers, Skeletal , Neurons/physiology , Rats , Rats, Sprague-Dawley , Rodentia , TRPV Cation Channels/physiology
20.
Intervirology ; 65(3): 134-143, 2022.
Article in English | MEDLINE | ID: mdl-34736262

ABSTRACT

INTRODUCTION: Recombination-activating gene (Rag) 1 and Rag2, which are essential in V(D)J recombination, play a crucial role in B- and T-cell maturation. METHOD: We investigated the effects of Rag2 deficiency in clustered regularly interspaced short palindromic repeats/Cas9-mediated FVB-Rag2 knockout (KO) and wild-type (WT) mice infected with mouse adenovirus type 1 (MAV-1) via the intranasal route. RESULTS: MAV-1 infection caused more severe histopathological changes in FVB-Rag2 KO mice than in WT mice. FVB-Rag2 KO mice exhibited moderate to severe inflammation on day 4 and severe inflammation on day 8 post infection. In contrast, WT mice showed mild inflammation on day 4 and mild to severe inflammation on day 8 post infection, including interstitial pneumonia and inflammatory cell infiltration in the lungs and liver. Viral loads in the spleen and kidneys were significantly higher in FVB-Rag2 KO mice than in WT mice on day 8 post infection. Levels of cytokines and chemokines, including macrophage inflammatory protein-1α, induced protein 10, interferon (IFN)-α, IFN-γ, and tumor necrosis factor alpha, were upregulated in the spleens of FVB-Rag2 KO mice compared with those of WT mice. The upregulation of several cytokines occurred concurrently with the histopathological changes. MAV-1 infection induced more severe systemic infection in FVB-Rag2 KO mice than in WT mice. CONCLUSION: In mice, Rag2 deficiency induces inflammatory cell recruitment via the upregulation of cytokine and chemokine levels. The MAV-1 infection model can be utilized to assess the efficacy and safety of therapeutic agents for human adenoviral diseases.


Subject(s)
Adenoviridae Infections , Cytokines , Adenoviridae/genetics , Animals , Cytokines/metabolism , DNA-Binding Proteins/genetics , Inflammation , Mice , Mice, Inbred C57BL , Mice, Knockout , Severe Combined Immunodeficiency
SELECTION OF CITATIONS
SEARCH DETAIL