Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(5): e1012210, 2024 May.
Article in English | MEDLINE | ID: mdl-38709737

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1008437.].

2.
Stress Biol ; 4(1): 5, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252344

ABSTRACT

The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.

3.
Plant Physiol ; 192(1): 666-679, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36881883

ABSTRACT

The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.


Subject(s)
Ascomycota , Verticillium , Gossypium/metabolism , Disease Resistance/genetics , Actins/metabolism , Calcium/metabolism , Verticillium/physiology , Ascomycota/metabolism , Actin Cytoskeleton/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism
4.
Mol Plant Pathol ; 22(12): 1641-1655, 2021 12.
Article in English | MEDLINE | ID: mdl-34519407

ABSTRACT

Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.


Subject(s)
Magnaporthe , Oryza , Actins/genetics , Ascomycota , Fungal Proteins/genetics , Magnaporthe/genetics , Peroxisomes , Plant Diseases
5.
PLoS Pathog ; 16(3): e1008437, 2020 03.
Article in English | MEDLINE | ID: mdl-32176741

ABSTRACT

Magnaporthe oryzae causes rice blast disease, but little is known about the dynamic restructuring of the actin cytoskeleton during its polarized tip growth and pathogenesis. Here, we used super-resolution live-cell imaging to investigate the dynamic organization of the actin cytoskeleton in M. oryzae during hyphal tip growth and pathogenesis. We observed a dense actin network at the apical region of the hyphae and actin filaments originating from the Spitzenkörper (Spk, the organizing center for hyphal growth and development) that formed branched actin bundles radiating to the cell membrane. The actin cross-linking protein Fimbrin (MoFim1) helps organize this actin distribution. MoFim1 localizes to the actin at the subapical collar, the actin bundles, and actin at the Spk. Knockout of MoFim1 resulted in impaired Spk maintenance and reduced actin bundle formation, preventing polar growth, vesicle transport, and the expansion of hyphae in plant cells. Finally, transgenic rice (Oryza sativa) expressing RNA hairpins targeting MoFim1 exhibited improved resistance to M. oryzae infection, indicating that MoFim1 represents an excellent candidate for M. oryzae control. These results reveal the dynamics of actin assembly in M. oryzae during hyphal tip development and pathogenesis, and they suggest a mechanism in which MoFim1 organizes such actin networks.


Subject(s)
Actins , Fungal Proteins , Hyphae , Magnaporthe , Membrane Glycoproteins , Microfilament Proteins , Oryza/microbiology , Plant Diseases/microbiology , Actins/genetics , Actins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/genetics , Hyphae/growth & development , Magnaporthe/genetics , Magnaporthe/metabolism , Magnaporthe/pathogenicity , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism
6.
Plant Cell ; 31(2): 520-536, 2019 02.
Article in English | MEDLINE | ID: mdl-30651348

ABSTRACT

The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.


Subject(s)
Chitinases/metabolism , Gossypium/metabolism , Gossypium/microbiology , Plant Proteins/metabolism , Verticillium/pathogenicity , Chitinases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gossypium/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics
7.
J Healthc Eng ; 2017: 2727686, 2017.
Article in English | MEDLINE | ID: mdl-29104743

ABSTRACT

Purpose: With the development of digital X-ray imaging and processing methods, the categorization and analysis of massive digital radiographic images need to be automatically finished. What is crucial in this processing is the automatic retrieval and recognition of radiographic position. To address these concerns, we developed an automatic method to identify a patient's position and body region using only frequency curve classification and gray matching. Methods: Our new method is combined with frequency analysis and gray image matching. The radiographic position was determined from frequency similarity and amplitude classification. The body region recognition was performed by image matching in the whole-body phantom image with prior knowledge of templates. The whole-body phantom image was stitched by radiological images of different parts. Results: The proposed method can automatically retrieve and recognize the radiographic position and body region using frequency and intensity information. It replaces 2D image retrieval with 1D frequency curve classification, with higher speed and accuracy up to 93.78%. Conclusion: The proposed method is able to outperform the digital X-ray image's position recognition with a limited time cost and a simple algorithm. The frequency information of radiography can make image classification quicker and more accurate.


Subject(s)
Pattern Recognition, Automated , Phantoms, Imaging , Radiographic Image Enhancement , Radiographic Image Interpretation, Computer-Assisted , Algorithms , Humans
8.
J Integr Plant Biol ; 59(8): 531-534, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28474404

ABSTRACT

Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here, we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles, which was accompanied with accelerated fiber growth at the fast-elongating stage. Meanwhile, overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.


Subject(s)
Actins/metabolism , Cotton Fiber , Gossypium/metabolism , Plant Proteins/metabolism , Cell Wall/metabolism , Gossypium/cytology , Gossypium/genetics , Plants, Genetically Modified
9.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Article in English | MEDLINE | ID: mdl-26869704

ABSTRACT

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Subject(s)
Gossypium/metabolism , Gossypium/microbiology , Homeostasis , Plant Diseases/microbiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Verticillium/physiology , Disease Resistance , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Organ Specificity/genetics , Phylogeny , Plant Roots/metabolism , Plant Vascular Bundle/metabolism , Proteomics
10.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26873979

ABSTRACT

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Subject(s)
Feedback, Physiological , Gossypium/immunology , Gossypium/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Verticillium/physiology , Arabidopsis/genetics , Calcium/metabolism , Calcium Signaling/genetics , Cell Nucleus/metabolism , Cytosol/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Gossypium/genetics , Plant Diseases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Protein Binding , Protein Domains , Subcellular Fractions/metabolism , Trans-Activators/metabolism , Transcription, Genetic
11.
J Genet Genomics ; 42(6): 311-7, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26165497

ABSTRACT

The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants. The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology. In the present work, we identified a gene encoding the C3H2C3-type RING finger protein NtRCP1 from tobacco BY-2 cells. Enzymatic analysis demonstrated that NtRCP1 is a functional E3 ubiquitin ligase. In tobacco plants, expression level of NtRCP1 was higher in the reproductive shoot apices than in the vegetative ones. NtRCP1-overexpressing plants underwent a more rapid transition from the vegetative to the reproductive phase and flowered markedly earlier than the wild-type control. Histological analysis revealed that the shoot apical meristem of NtRCP1-overexpressing plants initiated inflorescence primordia precociously compared to the wild-type plant due to accelerated cell division. Overexpression of NtRCP1 in BY-2 suspension cells promoted cell division, which was a consequence of the shortened G2 phase in the cell cycle. Together, our data suggest that NtRCP1 may act as a regulator of the phase transition, possibly through its role in cell cycle regulation, during vegetative/reproductive development in tobacco plant.


Subject(s)
Flowers/metabolism , Nicotiana/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Flowers/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics
12.
Mol Plant ; 8(3): 399-411, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25704161

ABSTRACT

In this study, we identified a defense-related major latex protein (MLP) from upland cotton (designated GhMLP28) and investigated its functional mechanism. GhMLP28 transcripts were ubiquitously present in cotton plants, with higher accumulation in the root. Expression of the GhMLP28 gene was induced by Verticillium dahliae inoculation and was responsive to defense signaling molecules, including ethylene, jasmonic acid, and salicylic acid. Knockdown of GhMLP28 expression by virus-induced gene silencing resulted in increased susceptibility of cotton plants to V. dahliae infection, while ectopic overexpression of GhMLP28 in tobacco improved the disease tolerance of the transgenic plants. Further analysis revealed that GhMLP28 interacted with cotton ethylene response factor 6 (GhERF6) and facilitated the binding of GhERF6 to GCC-box element. Transient expression assay demonstrated that GhMLP28 enhanced the transcription factor activity of GhERF6, which led to the augmented expression of some GCC-box genes. GhMLP28 proteins were located in both the nucleus and cytoplasm and their nuclear distribution was dependent on the presence of GhERF6. Collectively, these results demonstrate that GhMLP28 acts as a positive regulator of GhERF6, and synergetic actions of the two proteins may contribute substantially to protection against V. dahliae infection in cotton plants.


Subject(s)
Gossypium/immunology , Plant Diseases/microbiology , Plant Proteins/immunology , Verticillium/physiology , Disease Resistance , Ethylenes/metabolism , Gene Expression Regulation, Plant , Gossypium/genetics , Gossypium/microbiology , Plant Diseases/immunology , Plant Proteins/genetics , Salicylic Acid/metabolism
13.
Plant Cell ; 25(11): 4421-38, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24220634

ABSTRACT

LIN-11, Isl1 and MEC-3 (LIM)-domain proteins play pivotal roles in a variety of cellular processes in animals, but plant LIM functions remain largely unexplored. Here, we demonstrate dual roles of the WLIM1a gene in fiber development in upland cotton (Gossypium hirsutum). WLIM1a is preferentially expressed during the elongation and secondary wall synthesis stages in developing fibers. Overexpression of WLIM1a in cotton led to significant changes in fiber length and secondary wall structure. Compared with the wild type, fibers of WLIM1a-overexpressing plants grew longer and formed a thinner and more compact secondary cell wall, which contributed to improved fiber strength and fineness. Functional studies demonstrated that (1) WLIM1a acts as an actin bundler to facilitate elongation of fiber cells and (2) WLIM1a also functions as a transcription factor to activate expression of Phe ammonia lyase-box genes involved in phenylpropanoid biosynthesis to build up the secondary cell wall. WLIM1a localizes in the cytosol and nucleus and moves into the nucleus in response to hydrogen peroxide. Taken together, these results demonstrate that WLIM1a has dual roles in cotton fiber development, elongation, and secondary wall formation. Moreover, our study shows that lignin/lignin-like phenolics may substantially affect cotton fiber quality; this finding may guide cotton breeding for improved fiber traits.


Subject(s)
Cell Wall/metabolism , Cotton Fiber , Gossypium/cytology , Gossypium/growth & development , Plant Proteins/metabolism , Actins/metabolism , Cell Nucleus/metabolism , Cell Wall/genetics , Cell Wall/ultrastructure , Cloning, Molecular , Cytoplasm/metabolism , Gene Expression Regulation, Plant , Gossypium/drug effects , Gossypium/genetics , Hydrogen Peroxide/pharmacology , Lignin/metabolism , Phylogeny , Plant Cells/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Protein Transport/drug effects
14.
Plant Physiol ; 162(3): 1669-80, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23715527

ABSTRACT

Plant-specific TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (TCP) transcription factors play crucial roles in development, but their functional mechanisms remain largely unknown. Here, we characterized the cellular functions of the class I TCP transcription factor GhTCP14 from upland cotton (Gossypium hirsutum). GhTCP14 is expressed predominantly in fiber cells, especially at the initiation and elongation stages of development, and its expression increased in response to exogenous auxin. Induced heterologous overexpression of GhTCP14 in Arabidopsis (Arabidopsis thaliana) enhanced initiation and elongation of trichomes and root hairs. In addition, root gravitropism was severely affected, similar to mutant of the auxin efflux carrier PIN-FORMED2 (PIN2) gene. Examination of auxin distribution in GhTCP14-expressing Arabidopsis by observation of auxin-responsive reporters revealed substantial alterations in auxin distribution in sepal trichomes and root cortical regions. Consistent with these changes, expression of the auxin uptake carrier AUXIN1 (AUX1) was up-regulated and PIN2 expression was down-regulated in the GhTCP14-expressing plants. The association of GhTCP14 with auxin responses was also evidenced by the enhanced expression of auxin response gene IAA3, a gene in the AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) family. Electrophoretic mobility shift assays showed that GhTCP14 bound the promoters of PIN2, IAA3, and AUX1, and transactivation assays indicated that GhTCP14 had transcription activation activity. Taken together, these results demonstrate that GhTCP14 is a dual-function transcription factor able to positively or negatively regulate expression of auxin response and transporter genes, thus potentially acting as a crucial regulator in auxin-mediated differentiation and elongation of cotton fiber cells.


Subject(s)
Gossypium/cytology , Gossypium/genetics , Indoleacetic Acids/metabolism , Plant Epidermis/cytology , Plant Epidermis/metabolism , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Differentiation , Cell Nucleus/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Gossypium/metabolism , Gravitropism/genetics , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/cytology , Plant Roots/genetics , Plants, Genetically Modified , Promoter Regions, Genetic , Transcription Factors/genetics , Trichomes/genetics , Trichomes/metabolism
15.
J Integr Plant Biol ; 54(6): 412-21, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22583823

ABSTRACT

AaNhaD, a gene isolated from the soda lake alkaliphile Alkalimonas amylolytica, encodes a Na(+) /H(+) antiporter crucial for the bacterium's resistance to salt/alkali stresses. However, it remains unknown whether this type of bacterial gene may be able to increase the tolerance of flowering plants to salt/alkali stresses. To investigate the use of extremophile genetic resources in higher plants, transgenic tobacco BY-2 cells and plants harboring AaNhaD were generated and their stress tolerance was evaluated. Ectopic expression of AaNhaD enhanced the salt tolerance of the transgenic BY-2 cells in a pH-dependent manner. Compared to wild-type controls, the transgenic cells exhibited increased Na(+) concentrations and pH levels in the vacuoles. Subcellular localization analysis indicated that AaNhaD-GFP fusion proteins were primarily localized in the tonoplasts. Similar to the transgenic BY-2 cells, AaNhaD-overexpressing tobacco plants displayed enhanced stress tolerance when grown in saline-alkali soil. These results indicate that AaNhaD functions as a pH-dependent tonoplast Na(+) /H(+) antiporter in plant cells, thus presenting a new avenue for the genetic improvement of salinity/alkalinity tolerance.


Subject(s)
Gammaproteobacteria/genetics , Plants, Genetically Modified/metabolism , Salt Tolerance/genetics , Sodium-Hydrogen Exchangers/genetics , Sodium/metabolism , Cell Line , Cytosol/metabolism , Hydrogen-Ion Concentration , Sodium-Hydrogen Exchangers/metabolism , Nicotiana/metabolism , Vacuoles/metabolism
16.
Plant Physiol ; 159(2): 835-50, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22492844

ABSTRACT

The BLADE-ON-PETIOLE (BOP) genes of Arabidopsis (Arabidopsis thaliana) have been shown to play an essential role in floral abscission by specializing the abscission zone (AZ) anatomy. However, the molecular and cellular mechanisms that underlie differentiation of the AZ are largely unknown. In this study, we identified a tobacco (Nicotiana tabacum) homolog of BOP (designated NtBOP2) and characterized its cellular function. In tobacco plants, the NtBOP2 gene is predominantly expressed at the base of the corolla in an ethylene-independent manner. Both antisense suppression of NtBOP genes and overexpression of NtBOP2 in tobacco plants caused a failure in corolla shedding. Histological analysis revealed that the differentiation of the corolla AZ was blocked in the transgenic flowers. This blockage was due to uncontrolled cell elongation at the region corresponding to wild-type AZ. The role of NtBOP2 in regulating cell elongation was further demonstrated in Bright Yellow 2 single cells: perturbation of NtBOP2 function by a dominant negative strategy led to the formation of abnormally elongated cells. Subcellular localization analysis showed that NtBOP2-green fluorescent protein fusion proteins were targeted to both the nucleus and cytoplasm. Yeast two-hybrid, firefly luciferase complementation imaging, and in vitro pull-down assays demonstrated that NtBOP2 proteins interacted with TGA transcription factors. Taken together, these results indicated that NtBOP2 mediated the differentiation of AZ architecture by controlling longitudinal cell growth. Furthermore, NtBOP2 may achieve this outcome through interaction with the TGA transcription factors and via an ethylene-independent signaling pathway.


Subject(s)
Cell Differentiation , Flowers/ultrastructure , Nicotiana/genetics , Amino Acid Sequence , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Enlargement , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromosomes, Plant/genetics , Chromosomes, Plant/metabolism , Cytoplasm/genetics , Cytoplasm/metabolism , DNA, Complementary/genetics , DNA, Complementary/metabolism , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Genes, Plant , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Microscopy, Electron , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Nicotiana/cytology , Nicotiana/physiology , Two-Hybrid System Techniques
17.
Plant Cell Environ ; 35(3): 588-600, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21988377

ABSTRACT

Suaeda salsa is a euhalophytic plant that is tolerant to coastal seawater salinity. In this study, we cloned a cDNA encoding an 8.4 kDa chloroplast outer envelope protein (designated as SsOEP8) from S. salsa and characterized its cellular function. Steady-state transcript levels of SsOEP8 in S. salsa were up-regulated in response to oxidative stress. Consistently, ectopic expression of SsOEP8 conferred enhanced oxidative stress tolerance in transgenic Bright Yellow 2 (BY-2) cells and Arabidopsis, in which H(2) O(2) content was reduced significantly in leaf cells. Further studies revealed that chloroplasts aggregated to the sides of mesophyll cells in transgenic Arabidopsis leaves, and this event was accompanied by inhibited expression of genes encoding proteins for chloroplast movements such as AtCHUP1, a protein involved in actin-based chloroplast positioning and movement. Moreover, organization of actin cytoskeleton was found to be altered in transgenic BY-2 cells. Together, these results suggest that SsOEP8 may play a critical role in oxidative stress tolerance by changing actin cytoskeleton-dependent chloroplast distribution, which may consequently lead to the suppressed production of reactive oxygen species (ROS) in chloroplasts. One significantly novel aspect of this study is the finding that the small chloroplast envelope protein is involved in oxidative stress tolerance.


Subject(s)
Arabidopsis/physiology , Chenopodiaceae/genetics , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Oxidative Stress , Actins/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Base Sequence , Cells, Cultured , Chenopodiaceae/metabolism , Chloroplast Proteins/genetics , Cloning, Molecular , Cytoskeleton/metabolism , DNA, Complementary/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Molecular Sequence Data , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
18.
Plant Cell Physiol ; 51(8): 1276-90, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20558432

ABSTRACT

Cotton fiber development at the stages of elongation and secondary wall synthesis determines the traits of fiber length and strength. To date, the mechanisms controlling the progression of these two phases remain elusive. In this work, the function of a fiber-preferential actin-binding protein (GhPFN2) was characterized by cytological and molecular studies on the fibers of transgenic green-colored cotton (Gossypium hirsutum) through three successive generations. Overexpression of GhPFN2 caused pre-terminated cell elongation, resulting in a marked decrease in the length of mature fibers. Cytoskeleton staining and quantitative assay revealed that thicker and more abundant F-actin bundles formed during the elongation stage in GhPFN2-overexpressing fibers. Accompanying this alteration, the developmental reorientation of transverse microtubules to the oblique direction was advanced by 2 d at the period of transition from elongation to secondary wall deposition. Birefringence and reverse transcription-PCR analyses showed that earlier onset of secondary wall synthesis occurred in parallel. These data demonstrate that formation of the higher actin structure plays a determinant role in the progression of developmental phases in cotton fibers, and that GhPFN2 acts as a critical modulator in this process. Such a function of the actin cytoskeleton in cell phase conversion may be common to other secondary wall-containing plant cells.


Subject(s)
Cotton Fiber , Gossypium/genetics , Plant Proteins/metabolism , Profilins/metabolism , Actins/metabolism , Amino Acid Sequence , Cell Wall/metabolism , Cloning, Molecular , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gossypium/growth & development , Gossypium/metabolism , Microtubules/metabolism , Molecular Sequence Data , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Profilins/genetics , RNA, Plant/genetics
19.
J Proteome Res ; 9(2): 1076-87, 2010 Feb 05.
Article in English | MEDLINE | ID: mdl-19954254

ABSTRACT

Cotton fiber is an ideal model for studying plant cell elongation. To date, the underlying mechanisms controlling fiber elongation remain unclear due to their high complexity. In this study, a comparative proteomic analysis between a short-lint fiber mutant (Ligon lintless, Li(1)) and its wild-type was performed to identify fiber elongation-related proteins. By 2-DE combined with local EST database-assisted MS/MS analysis, 81 differentially expressed proteins assigned to different functional categories were identified from Li(1) fibers, of which 54 were down-regulated and 27 were up-regulated. Several novel aspects regarding cotton fiber elongation can be illustrated from our data. First, over half of the down-regulated proteins were newly identified at the protein level, which is mainly involved in protein folding and stabilization, nucleocytoplasmic transport, signal transduction, and vesicular-mediated transport. Second, a number of cytoskeleton-related proteins showed a remarkable decrease in protein abundance in the Li(1) fibers. Accordingly, the architecture of actin cytoskeleton was severely deformed and the microtubule organization was moderately altered, accompanied with dramatic disruption of vesicle trafficking. Third, the expression of several proteins involved in unfolded protein response (UPR) was activated in Li(1) fibers, indicating that the deficiency of fiber cell elongation was related to ER stress. Collectively, these findings significantly advanced our understanding of the mechanisms associated with cotton fiber elongation.


Subject(s)
Gossypium/metabolism , Plant Proteins/metabolism , Proteomics , Base Sequence , DNA Primers , Electrophoresis, Gel, Two-Dimensional , Expressed Sequence Tags , Microscopy, Electron, Scanning , Polymerase Chain Reaction , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tandem Mass Spectrometry
20.
J Chem Phys ; 130(2): 024508, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19154039

ABSTRACT

We conduct classical molecular dynamics simulations to investigate isobaric melting of defective Cu solids with only one type of defect: intrinsic or extrinsic stacking faults. We characterize bulk melting and nucleation of melt in terms of order parameters, liquid cluster analysis, and the mean-first-passage-time method. The stacking faults induce negligible reduction in the temperature at melting, and the amount of superheating in these defective solids is the same as the perfect solids. Both homogeneous and heterogeneous nucleations of melt are observed. The existence of the stacking faults only slightly increases the nucleation rate and the probability of nucleation at heterogeneous nucleation sites. Such observations can be attributed to the low energy of the stacking faults and the extremely high heating rates in molecular dynamics simulations. These results underscore the necessity of considering the effects of rate and defect when interpreting experimental and simulation results as regards, e.g., phase boundaries.


Subject(s)
Copper/chemistry , Quantum Theory , Freezing
SELECTION OF CITATIONS
SEARCH DETAIL
...