Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 20(5): e1012210, 2024 May.
Article in English | MEDLINE | ID: mdl-38709737

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1008437.].

2.
Int J Mol Sci ; 25(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38473921

ABSTRACT

Cytoskeletal microtubules (MTs) play crucial roles in many aspects of life processes in eukaryotic organisms. They dynamically assemble physiologically important MT arrays under different cell conditions. Currently, aspects of MT assembly underlying the development and pathogenesis of the model plant pathogenic fungus Magnaporthe oryzae (M. oryzae) are unclear. In this study, we characterized the MT plus end binding protein MoMal3 in M. oryzae. We found that knockout of MoMal3 results in defects in hyphal polar growth, appressorium-mediated host penetration and nucleus division. Using high-resolution live-cell imaging, we further found that the MoMal3 mutant assembled a rigid MT in parallel with the MT during hyphal polar growth, the cage-like network in the appressorium and the stick-like spindle in nuclear division. These aberrant MT organization patterns in the MoMal3 mutant impaired actin-based cell growth and host infection. Taken together, these findings showed that M. oryzae relies on MoMal3 to assemble elaborate MT arrays for growth and infection. The results also revealed the assembly mode of MTs in M. oryzae, indicating that MTs are pivotal for M. oryzae growth and host infection and may be new targets for devastating fungus control.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Carrier Proteins/metabolism , Magnaporthe/physiology , Ascomycota/metabolism , Microtubules/metabolism , Oryza/metabolism , Plant Diseases/microbiology , Fungal Proteins/metabolism
3.
Stress Biol ; 4(1): 5, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252344

ABSTRACT

The dynamic assembly of the actin cytoskeleton is vital for Magnaporthe oryzae development and host infection. The actin-related protein MoFim1 is a key factor for organizing the M. oryzae actin cytoskeleton. Currently, how MoFim1 is regulated in M. oryzae to precisely rearrange the actin cytoskeleton is unclear. In this study, we found that MoFim1 associates with the M. oryzae mitogen-activated protein (MAP) kinase Pmk1 to regulate actin assembly. MoFim1 directly interacted with Pmk1, and the phosphorylation level of MoFim1 was decreased in Δpmk1, which led to a change in the subcellular distribution of MoFim1 in the hyphae of Δpmk1. Moreover, the actin cytoskeleton was aberrantly organized at the hyphal tip in the Δpmk1, which was similar to what was observed in the Δmofim1 during hyphal growth. Furthermore, phosphorylation analysis revealed that Pmk1 could phosphorylate MoFim1 at serine 94. Loss of phosphorylation of MoFim1 at serine 94 decreased actin bundling activity. Additionally, the expression of the site mutant of MoFim1 S94D (in which serine 94 was replaced with aspartate to mimic phosphorylation) in Δpmk1 could reverse the defects in actin organization and hyphal growth in Δpmk1. It also partially rescues the formation of appressorium failure in Δpmk1. Taken together, these findings suggest a regulatory mechanism in which Pmk1 phosphorylates MoFim1 to regulate the assembly of the actin cytoskeleton during hyphal development and pathogenesis.

4.
Plant Physiol ; 192(1): 666-679, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36881883

ABSTRACT

The active structural change of actin cytoskeleton is a general host response upon pathogen attack. This study characterized the function of the cotton (Gossypium hirsutum) actin-binding protein VILLIN2 (GhVLN2) in host defense against the soilborne fungus Verticillium dahliae. Biochemical analysis demonstrated that GhVLN2 possessed actin-binding, -bundling, and -severing activities. A low concentration of GhVLN2 could shift its activity from actin bundling to actin severing in the presence of Ca2+. Knockdown of GhVLN2 expression by virus-induced gene silencing reduced the extent of actin filament bundling and interfered with the growth of cotton plants, resulting in the formation of twisted organs and brittle stems with a decreased cellulose content of the cell wall. Upon V. dahliae infection, the expression of GhVLN2 was downregulated in root cells, and silencing of GhVLN2 enhanced the disease tolerance of cotton plants. The actin bundles were less abundant in root cells of GhVLN2-silenced plants than in control plants. However, upon infection by V. dahliae, the number of actin filaments and bundles in the cells of GhVLN2-silenced plants was raised to a comparable level as those in control plants, with the dynamic remodeling of the actin cytoskeleton appearing several hours in advance. GhVLN2-silenced plants exhibited a higher incidence of actin filament cleavage in the presence of Ca2+, suggesting that pathogen-responsive downregulation of GhVLN2 could activate its actin-severing activity. These data indicate that the regulated expression and functional shift of GhVLN2 contribute to modulating the dynamic remodeling of the actin cytoskeleton in host immune responses against V. dahliae.


Subject(s)
Ascomycota , Verticillium , Gossypium/metabolism , Disease Resistance/genetics , Actins/metabolism , Calcium/metabolism , Verticillium/physiology , Ascomycota/metabolism , Actin Cytoskeleton/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant , Plant Proteins/metabolism
5.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055065

ABSTRACT

The devastating fungus Magnaporthe oryzae (M. oryzae) forms a specialized infection structure known as appressorium, which generates enormous turgor, to penetrate the plant cells. However, how M. oryzae regulates the appressorium turgor formation, is not well understood. In this study, we identified MoBZIP3, a bZIP transcription factor that functioned in pathogenesis in M. oryzae. We found that the pathogenicity of the MoBZIP3 knockout strain (Δmobzip3) was significantly reduced, and the defect was restored after re-expression of MoBZIP3, indicating that MoBZIP3 is required for M. oryzae virulence. Further analysis showed that MoBZIP3 functions in utilization of glycogen and lipid droplets for generation of glycerol in appressorium. MoBZIP3 localized in the nucleus and could bind directly to the promoters of the glycerol synthesis-related genes, MoPTH2, MoTGL1 and MoPEX6, and regulate their expression which is critical for glycerol synthesis in the appressorium turgor pressure generation. Furthermore, the critical turgor sensor gene MoSln1 was also down regulated and its subcellular localization was aberrant in Δmobzip3, which leads to a disordered actin assembly in the Δmobzip3 appressorium. Taken together, these results revealed new regulatory functions of the bZIP transcription factor MoBZIP3, in regulating M. oryzae appressorium turgor formation and infection.


Subject(s)
Ascomycota/physiology , Disease Susceptibility , Host-Pathogen Interactions , Oryza/microbiology , Plant Diseases/microbiology , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Glycogen/genetics , Glycogen/metabolism , Lipid Metabolism/genetics , Mutation , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Virulence
6.
Mol Plant Pathol ; 22(12): 1641-1655, 2021 12.
Article in English | MEDLINE | ID: mdl-34519407

ABSTRACT

Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip.


Subject(s)
Magnaporthe , Oryza , Actins/genetics , Ascomycota , Fungal Proteins/genetics , Magnaporthe/genetics , Peroxisomes , Plant Diseases
7.
Plant J ; 107(3): 775-786, 2021 08.
Article in English | MEDLINE | ID: mdl-33982335

ABSTRACT

Nucleotide-binding site (NBS)-leucine-rich repeat (LRR) domain receptor (NLR) proteins play important roles in plant innate immunity by recognizing pathogen effectors. The Toll/interleukin-1 receptor (TIR)-NBS (TN) proteins belong to a subtype of the atypical NLRs, but their function in plant immunity is poorly understood. The well-characterized Arabidopsis thaliana typical coiled-coil (CC)-NBS-LRR (CNL) protein Resistance to Pseudomonas syringae 5 (RPS5) is activated after recognizing the Pseudomonas syringae type III effector AvrPphB. To explore whether the truncated TN proteins function in CNL-mediated immune signaling, we examined the interactions between the Arabidopsis TN proteins and RPS5, and found that TN13 and TN21 interacted with RPS5. However, only TN13, but not TN21, was involved in the resistance to P. syringae pv. tomato (Pto) strain DC3000 carrying avrPphB, encoding the cognate effector recognized by RPS5. Moreover, the regulation of Pto DC3000 avrPphB resistance by TN13 appeared to be specific, as loss of function of TN13 did not compromise resistance to Pto DC3000 hrcC- or Pto DC3000 avrRpt2. In addition, we demonstrated that the CC and NBS domains of RPS5 play essential roles in the interaction between TN13 and RPS5. Taken together, our results uncover a direct functional link between TN13 and RPS5, suggesting that TN13 acts as a partner in modulating RPS5-activated immune signaling, which constitutes a previously unknown mechanism for TN-mediated regulation of plant immunity.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Membrane Proteins/metabolism , Plant Diseases/immunology , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Membrane Proteins/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Pseudomonas syringae
8.
PLoS Pathog ; 16(3): e1008437, 2020 03.
Article in English | MEDLINE | ID: mdl-32176741

ABSTRACT

Magnaporthe oryzae causes rice blast disease, but little is known about the dynamic restructuring of the actin cytoskeleton during its polarized tip growth and pathogenesis. Here, we used super-resolution live-cell imaging to investigate the dynamic organization of the actin cytoskeleton in M. oryzae during hyphal tip growth and pathogenesis. We observed a dense actin network at the apical region of the hyphae and actin filaments originating from the Spitzenkörper (Spk, the organizing center for hyphal growth and development) that formed branched actin bundles radiating to the cell membrane. The actin cross-linking protein Fimbrin (MoFim1) helps organize this actin distribution. MoFim1 localizes to the actin at the subapical collar, the actin bundles, and actin at the Spk. Knockout of MoFim1 resulted in impaired Spk maintenance and reduced actin bundle formation, preventing polar growth, vesicle transport, and the expansion of hyphae in plant cells. Finally, transgenic rice (Oryza sativa) expressing RNA hairpins targeting MoFim1 exhibited improved resistance to M. oryzae infection, indicating that MoFim1 represents an excellent candidate for M. oryzae control. These results reveal the dynamics of actin assembly in M. oryzae during hyphal tip development and pathogenesis, and they suggest a mechanism in which MoFim1 organizes such actin networks.


Subject(s)
Actins , Fungal Proteins , Hyphae , Magnaporthe , Membrane Glycoproteins , Microfilament Proteins , Oryza/microbiology , Plant Diseases/microbiology , Actins/genetics , Actins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hyphae/genetics , Hyphae/growth & development , Magnaporthe/genetics , Magnaporthe/metabolism , Magnaporthe/pathogenicity , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism
9.
Nat Plants ; 5(5): 498-504, 2019 05.
Article in English | MEDLINE | ID: mdl-31040442

ABSTRACT

Cotton (Gossypium hirsutum) fibres consist of single cells that grow in a highly polarized manner, assumed to be controlled by the cytoskeleton1-3. However, how the cytoskeletal organization and dynamics underpin fibre development remains unexplored. Moreover, it is unclear whether cotton fibres expand via tip growth or diffuse growth2-4. We generated stable transgenic cotton plants expressing fluorescent markers of the actin and microtubule cytoskeleton. Live-cell imaging revealed that elongating cotton fibres assemble a cortical filamentous actin network that extends along the cell axis to finally form actin strands with closed loops in the tapered fibre tip. Analyses of F-actin network properties indicate that cotton fibres have a unique actin organization that blends features of both diffuse and tip growth modes. Interestingly, typical actin organization and endosomal vesicle aggregation found in tip-growing cell apices were not observed in fibre tips. Instead, endomembrane compartments were evenly distributed along the elongating fibre cells and moved bi-directionally along the fibre shank to the fibre tip. Moreover, plus-end tracked microtubules transversely encircled elongating fibre shanks, reminiscent of diffusely growing cells. Collectively, our findings indicate that cotton fibres elongate via a unique tip-biased diffuse growth mode.


Subject(s)
Cotton Fiber , Cytoskeleton/ultrastructure , Gossypium/ultrastructure , Actins/ultrastructure , Green Fluorescent Proteins , Imaging, Three-Dimensional , Intravital Microscopy/methods , Microtubules/ultrastructure
10.
Plant Cell ; 31(2): 520-536, 2019 02.
Article in English | MEDLINE | ID: mdl-30651348

ABSTRACT

The apoplast serves as the first battlefield between the plant hosts and invading microbes; therefore, work on plant-pathogen interactions has increasingly focused on apoplastic immunity. In this study, we identified three proteins in the apoplast of cotton (Gossypium sp) root cells during interaction of the plant with the fungal pathogen Verticillium dahliae Among these proteins, cotton host cells secrete chitinase 28 (Chi28) and the Cys-rich repeat protein 1 (CRR1), while the pathogen releases the protease VdSSEP1. Biochemical analysis demonstrated that VdSSEP1 hydrolyzed Chi28, but CRR1 protected Chi28 from cleavage by Verticillium dahliae secretory Ser protease 1 (VdSSEP1). In accordance with the in vitro results, CRR1 interacted with Chi28 in yeast and plant cells and attenuated the observed decrease in Chi28 level that occurred in the apoplast of plant cells upon pathogen attack. Knockdown of CRR1 or Chi28 in cotton plants resulted in higher susceptibility to V. dahliae infection, and overexpression of CRR1 increased plant resistance to V dahliae, the fungus Botrytis cinerea, and the oomycete Phytophthora parasitica var nicotianae By contrast, knockout of VdSSEP1 in V. dahliae destroyed the pathogenicity of this fungus. Together, our results provide compelling evidence for a multilayered interplay of factors in cotton apoplastic immunity.


Subject(s)
Chitinases/metabolism , Gossypium/metabolism , Gossypium/microbiology , Plant Proteins/metabolism , Verticillium/pathogenicity , Chitinases/genetics , Disease Resistance/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Gossypium/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Proteins/genetics
11.
New Phytol ; 221(2): 1049-1059, 2019 01.
Article in English | MEDLINE | ID: mdl-30156704

ABSTRACT

In plants, the actin cytoskeleton plays a central role in regulating intracellular transport and trafficking in the endomembrane system. Work in legumes suggested that during nodulation, the actin cytoskeleton coordinates numerous cellular processes in the development of nitrogen-fixing nodules. However, we lacked live-cell visualizations demonstrating dynamic remodeling of the actin cytoskeleton during infection droplet release and symbiosome development. Here, we generated transgenic Medicago truncatula lines stably expressing the fluorescent actin marker ABD2-GFP, and utilized live-cell imaging to reveal the architecture and dynamics of the actin cytoskeleton during nodule development. Live-cell observations showed that different zones in nitrogen-fixing nodules exhibit distinct actin architectures and infected cells display five characteristic actin architectures during nodule development. Live-cell imaging combined with three-dimensional reconstruction demonstrated that dense filamentous-actin (F-actin) arrays channel the elongation of infection threads and the release of infection droplets, an F-actin network encircles freshly-released rhizobia, and short F-actin fragments and actin dots around radially distributed symbiosomes. Our findings suggest an important role of the actin cytoskeleton in infection droplet release, symbiosome development and maturation, and provide significant insight into the cellular mechanisms underlying nodule development and nitrogen fixation during legume-rhizobia interactions.


Subject(s)
Actin Cytoskeleton/metabolism , Medicago truncatula/genetics , Sinorhizobium meliloti/physiology , Symbiosis , Actins/metabolism , Genes, Reporter , Medicago truncatula/microbiology , Nitrogen Fixation , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Root Nodulation , Plants, Genetically Modified , Root Nodules, Plant/microbiology
12.
Environ Microbiol ; 20(4): 1607-1621, 2018 04.
Article in English | MEDLINE | ID: mdl-29575486

ABSTRACT

The vascular wilt fungus Verticillium dahliae is one of the most destructive pathogens of cotton (Gossypium hirsutum) and many other economically important dicot plants. Fungal pathogens require Myosin-mediated actomyosin motility system for colonization of their host plants; however, the mechanisms underlying this process have not been fully characterized for V. dahliae. Here, in a knock-out experiment, we characterized the role of VdMyo5, a member of the Myosin V family, before and during infection of cotton and Arabidopsis thaliana. The VdMyo5 deletion mutant (ΔVdmyo5) fungi showed obvious defects in the development of conidia and the polarized elongation of vegetative hyphae, but no inhibition of host root penetration. Overall, the ΔVdmyo5 fungi exhibited dramatically reduced virulence in cotton and Arabidopsis, with almost no colonization in sections of host vascular tissue. We found labelled Myosin5-GFP to be specifically enriched at the hyphal tip, co-localized with FM4-64 labelled Spitzenkörper, which is the vesicle supply centre in filamentous fungi. Comparative secretome analysis revealed that proteins associated with cell wall modification and degradation of reactive oxygen species were significantly altered in mutant strains. Our results indicate that Myosin5 is required for vegetative growth and full virulence, possibly by regulating vesicle transport. The findings provide important insight into the cellular mechanisms of Verticillium pathogenesis.


Subject(s)
Actomyosin/metabolism , Arabidopsis/microbiology , Gossypium/microbiology , Myosin Type V/metabolism , Plant Diseases/microbiology , Verticillium/pathogenicity , Gene Knockout Techniques , Hyphae/growth & development , Myosin Type V/genetics , Plant Roots/microbiology , Spores, Fungal/growth & development , Verticillium/genetics , Verticillium/metabolism , Virulence/genetics
13.
Cell Physiol Biochem ; 44(6): 2322-2336, 2017.
Article in English | MEDLINE | ID: mdl-29258089

ABSTRACT

BACKGROUND/AIMS: The therapeutic efficacy of paclitaxel is hampered by chemotherapeutic resistance in non-small cell lung cancer (NSCLC). Rsf-1 enhanced paclitaxel resistance via nuclear factor-κB (NF-κB) in ovarian cancer cells and nasopharyngeal carcinoma. This study assessed the function of Rsf-1 in the modulation of the sensitivity of NSCLC to paclitaxel via the NF-κB pathway. METHODS: The mRNA and protein levels of the related genes were quantified by RT-PCR and Western blotting. Rsf-1 silencing was achieved with CRISPR/Cas9 gene editing. Cell cycle, migration and proliferation were tested with flow cytometry, transwell test and CCK8 test. Cell apoptosis was analyzed with flow cytometry and quantification of C-capase3. The parameters of the tumors were measured in H460 cell xenograft mice. RESULTS: Rsf-1 was highly expressed in H460 and H1299 cells. Rsf-1 knockout caused cell arrest at the G1 phase, increased cell apoptosis, and decreased migration and cell proliferation. Rsf-1 knockout increased the inhibition of cell proliferation, the reduction in cell migration and the augment in cell apoptosis in paclitaxel treated H460 and H1299 cells. Rsf-1 knockout further enhanced the paclitaxel-mediated decrease in the volume and weight of the tumors in H460 cell xenograft mice. Helenalin and Rsf-1 knockout decreased the protein levels of p-P65, BcL2, CFLAR, and XIAP; hSNF2H knockout decreased the protein level of NF-κB p-P65 without altering Rsf-1 and p65 protein levels, while Rsf-1 and hSNF2H double knockout decreased the level of NF-κB p-P65, in H1299 and H460 cells. CONCLUSION: These results demonstrate that Rsf-1 influences the sensitivity of NSCLC to paclitaxel via regulation of the NF-κB pathway and its downstream genes.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Drug Resistance, Neoplasm , Lung Neoplasms/drug therapy , NF-kappa B/metabolism , Nuclear Proteins/genetics , Paclitaxel/pharmacology , Trans-Activators/genetics , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Female , Gene Knockout Techniques , Humans , Lung/drug effects , Lung/metabolism , Lung/pathology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice, Nude , Nuclear Proteins/metabolism , Paclitaxel/therapeutic use , Signal Transduction , Trans-Activators/metabolism
14.
J Healthc Eng ; 2017: 2727686, 2017.
Article in English | MEDLINE | ID: mdl-29104743

ABSTRACT

Purpose: With the development of digital X-ray imaging and processing methods, the categorization and analysis of massive digital radiographic images need to be automatically finished. What is crucial in this processing is the automatic retrieval and recognition of radiographic position. To address these concerns, we developed an automatic method to identify a patient's position and body region using only frequency curve classification and gray matching. Methods: Our new method is combined with frequency analysis and gray image matching. The radiographic position was determined from frequency similarity and amplitude classification. The body region recognition was performed by image matching in the whole-body phantom image with prior knowledge of templates. The whole-body phantom image was stitched by radiological images of different parts. Results: The proposed method can automatically retrieve and recognize the radiographic position and body region using frequency and intensity information. It replaces 2D image retrieval with 1D frequency curve classification, with higher speed and accuracy up to 93.78%. Conclusion: The proposed method is able to outperform the digital X-ray image's position recognition with a limited time cost and a simple algorithm. The frequency information of radiography can make image classification quicker and more accurate.


Subject(s)
Pattern Recognition, Automated , Phantoms, Imaging , Radiographic Image Enhancement , Radiographic Image Interpretation, Computer-Assisted , Algorithms , Humans
15.
EMBO J ; 36(23): 3435-3447, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28978669

ABSTRACT

The microtubule (MT)-severing enzyme katanin triggers dynamic reorientation of cortical MT arrays that play crucial functions during plant cell morphogenesis, such as cell elongation, cell wall biosynthesis, and hormonal signaling. MT severing specifically occurs at crossover or branching nucleation sites in living Arabidopsis cells. This differs from the random severing observed along the entire length of single MTs in vitro and strongly suggests that a precise control mechanism must exist in vivo However, how katanin senses and cleaves at MT crossover and branching nucleation sites in vivo has remained unknown. Here, we show that the katanin p80 subunit KTN80 confers precision to MT severing by specific targeting of the katanin p60 subunit KTN1 to MT cleavage sites and that KTN1 is required for oligomerization of functional KTN80-KTN1 complexes that catalyze severing. Moreover, our findings suggest that the katanin complex in Arabidopsis is composed of a hexamer of KTN1-KTN80 heterodimers that sense MT geometry to confer precise MT severing. Our findings shed light on the precise control mechanism of MT severing in plant cells, which may be relevant for other eukaryotes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Katanin/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Genes, Plant , Katanin/chemistry , Katanin/genetics , Microtubules/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Mutation , Plants, Genetically Modified , Protein Structure, Quaternary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
16.
Sci China Life Sci ; 60(8): 861-867, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28741129

ABSTRACT

Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin bundling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence showing that actin cytoskeleton reorganization involving GhPFN2 is important for defense against V. dahliae infection.


Subject(s)
Gossypium/microbiology , Plant Proteins/metabolism , Profilins/metabolism , Verticillium/metabolism , Actin Cytoskeleton/metabolism , Disease Resistance , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Gossypium/metabolism , Host-Pathogen Interactions , Immunity, Innate , Plant Diseases/immunology , Plant Proteins/immunology , Plant Roots/metabolism , Plant Roots/microbiology , Profilins/immunology
17.
J Integr Plant Biol ; 59(8): 531-534, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28474404

ABSTRACT

Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here, we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles, which was accompanied with accelerated fiber growth at the fast-elongating stage. Meanwhile, overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.


Subject(s)
Actins/metabolism , Cotton Fiber , Gossypium/metabolism , Plant Proteins/metabolism , Cell Wall/metabolism , Gossypium/cytology , Gossypium/genetics , Plants, Genetically Modified
19.
Plant Physiol ; 170(4): 2392-406, 2016 04.
Article in English | MEDLINE | ID: mdl-26869704

ABSTRACT

Examining the proteins that plants secrete into the apoplast in response to pathogen attack provides crucial information for understanding the molecular mechanisms underlying plant innate immunity. In this study, we analyzed the changes in the root apoplast secretome of the Verticillium wilt-resistant island cotton cv Hai 7124 (Gossypium barbadense) upon infection with Verticillium dahliae Two-dimensional differential gel electrophoresis and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis identified 68 significantly altered spots, corresponding to 49 different proteins. Gene ontology annotation indicated that most of these proteins function in reactive oxygen species (ROS) metabolism and defense response. Of the ROS-related proteins identified, we further characterized a thioredoxin, GbNRX1, which increased in abundance in response to V. dahliae challenge, finding that GbNRX1 functions in apoplastic ROS scavenging after the ROS burst that occurs upon recognition of V. dahliae Silencing of GbNRX1 resulted in defective dissipation of apoplastic ROS, which led to higher ROS accumulation in protoplasts. As a result, the GbNRX1-silenced plants showed reduced wilt resistance, indicating that the initial defense response in the root apoplast requires the antioxidant activity of GbNRX1. Together, our results demonstrate that apoplastic ROS generation and scavenging occur in tandem in response to pathogen attack; also, the rapid balancing of redox to maintain homeostasis after the ROS burst, which involves GbNRX1, is critical for the apoplastic immune response.


Subject(s)
Gossypium/metabolism , Gossypium/microbiology , Homeostasis , Plant Diseases/microbiology , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Thioredoxins/metabolism , Verticillium/physiology , Disease Resistance , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Organ Specificity/genetics , Phylogeny , Plant Roots/metabolism , Plant Vascular Bundle/metabolism , Proteomics
20.
J Exp Bot ; 67(6): 1935-50, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26873979

ABSTRACT

Accumulating evidence indicates that plant MYB transcription factors participate in defense against pathogen attack, but their regulatory targets and related signaling processes remain largely unknown. Here, we identified a defense-related MYB gene (GhMYB108) from upland cotton (Gossypium hirsutum) and characterized its functional mechanism. Expression of GhMYB108 in cotton plants was induced by Verticillium dahliae infection and responded to the application of defense signaling molecules, including salicylic acid, jasmonic acid, and ethylene. Knockdown of GhMYB108 expression led to increased susceptibility of cotton plants to V. dahliae, while ecotopic overexpression of GhMYB108 in Arabidopsis thaliana conferred enhanced tolerance to the pathogen. Further analysis demonstrated that GhMYB108 interacted with the calmodulin-like protein GhCML11, and the two proteins form a positive feedback loop to enhance the transcription of GhCML11 in a calcium-dependent manner. Verticillium dahliae infection stimulated Ca(2+) influx into the cytosol in cotton root cells, but this response was disrupted in both GhCML11-silenced plants and GhMYB108-silenced plants in which expression of several calcium signaling-related genes was down-regulated. Taken together, these results indicate that GhMYB108 acts as a positive regulator in defense against V. dahliae infection by interacting with GhCML11. Furthermore, the data also revealed the important roles and synergetic regulation of MYB transcription factor, Ca(2+), and calmodulin in plant immune responses.


Subject(s)
Feedback, Physiological , Gossypium/immunology , Gossypium/microbiology , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Proteins/metabolism , Verticillium/physiology , Arabidopsis/genetics , Calcium/metabolism , Calcium Signaling/genetics , Cell Nucleus/metabolism , Cytosol/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Silencing , Gossypium/genetics , Plant Diseases/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Protein Binding , Protein Domains , Subcellular Fractions/metabolism , Trans-Activators/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...