Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Lab Chip ; 23(7): 1945-1953, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36897079

ABSTRACT

A microfluidic resistive pulse sensing technique offers a simple method for detecting and analysing microparticles in various fields, yet it has challenges such as the noise during detection and low throughput as the signal obtained from a small single sensing aperture and particle position is nonuniform. This study presents a microfluidic chip with multiple detection gates in the main channel to enhance the throughput while maintaining a simple operational system. A hydrodynamic sheathless particle focusing on a detection gate by modulation of the channel structure and measurement circuit with a reference gate to minimize the noise during detection is used for detecting resistive pulses. The proposed microfluidic chip can analyse the physical properties of 200 nm polystyrene particles and exosomes from MDA-MB-231 with high sensitivity with an error of <10% and high-throughput screening of more than 200 000 exosomes per seconds. The proposed microfluidic chip can analyse the physical properties with high sensitivity, so that it can be potentially used for exosome detection in biological and in vitro clinical applications.


Subject(s)
Microfluidic Analytical Techniques , Nanoparticles , Microfluidics , Microfluidic Analytical Techniques/methods , Polystyrenes , Hydrodynamics
2.
Nanomaterials (Basel) ; 11(11)2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34835768

ABSTRACT

A cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dot (QD)-based multi-level memory device with the structure [ITO/PEDOT:PSS/QDs/ZnO/Al:Al2O3/QDs/Al] was fabricated via a spin-coating method used to deposit thin films. Two layers of QD thin films present in the device act as charge storage layers to form three distinct states. Zinc oxide (ZnO) and aluminum oxide (Al2O3) were added to prevent leakage. ZnO NPs provide orthogonality between the two QD layers, and a poly(3,4-ethylenedioxythio-phene): poly(styrenesulfonate) (PEDOT:PSS) thin film was formed for effective hole injection from the electrodes. The core/shell structure of the QDs provides the quantum well, which causes the trapping of injected charges. The resistance changes according to the charging and discharging of the QDs' trap site and, as a result, the current through the device also changes. There are two quantum wells, two current changes, and three stable states. The role of each thin film was confirmed through I-V curve analysis and the fabrication conditions of each thin film were optimized. The synthesized QDs and ZnO nanoparticles were evaluated via X-ray diffraction, transmission electron microscopy, and absorbance and photoluminescence spectroscopy. The measured write voltages of the fabricated device were at 1.8 and 2.4 V, and the erase voltages were -4.05 and -4.6 V. The on/off ratio at 0.5 V was 2.2 × 103. The proposed memory device showed retention characteristics of ≥100 h and maintained the initial write/erase voltage even after 200 iterative operations.

3.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34685122

ABSTRACT

Shortwave infrared (SWIR) photodetectors are being actively researched for their application in autonomous vehicles, biometric sensors, and night vision. However, most of the SWIR photodetectors that have been studied so far are produced by complex semiconductor fabrication processes and have low sensitivity at room temperature because of thermal noise. In addition, the low wavelength band of the SWIR photodetectors currently used has a detrimental effect on the human eye. To overcome these disadvantages, we propose a solution-processed PbS SWIR photodetector that can minimize harmful effects on the human eye. In this study, we synthesized PbS quantum dots (QDs) that have high absorbance peaked at 1410 nm and fabricated SWIR photodetectors with a conductive polymer, poly(3-hexylthiophene) (P3HT), using the synthesized PbS QDs. The characteristics of the synthesized PbS QDs and the current-voltage (I-V) characteristics of the fabricated PbS SWIR photodetectors were measured. It was found that the maximum responsivity of the optimized PbS SWIR photodetector with P3HT was 2.26 times that of the PbS SWIR photodetector without P3HT. Moreover, due to the high hole mobility and an appropriate highest occupied molecular orbital level of P3HT, the former showed a lower operating voltage.

4.
Micromachines (Basel) ; 12(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34577697

ABSTRACT

In this study, a polyethyleneimine (PEI)-functionalized carbon nanotube (CNT) sensor was fabricated for carbon dioxide detection at room temperature. Uniform CNT thin films prepared using a filtration method were used as resistive networks. PEI, which contains amino groups, can effectively react with CO2 gas by forming carbamates at room temperatures. The morphology of the sensor was observed, and the properties were analyzed by scanning electron microscope (SEM), Raman spectroscopy, and fourier transform infrared (FT-IR) spectroscopy. When exposed to CO2 gas, the fabricated sensor exhibited better sensitivity than the pristine CNT sensor at room temperature. Both the repeatability and selectivity of the sensor were studied.

5.
Micromachines (Basel) ; 12(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34577705

ABSTRACT

Phosphorus (P) is one of the most important elements in the aquatic ecosystem, but its overuse causes eutrophication, which is a serious issue worldwide. In this study, we developed a miniaturized portable total phosphorus (TP) analysis device by integrating a TP sensor with a photocatalyst to pretreat analyte and optical components (LED and photodetector) to measure the absorbance of the blue-colored analyte for real-time TP monitoring and prevention of eutrophication. The size of the miniaturized portable TP analysis device is about 10.5 cm × 9.5 cm × 8 cm. Analyte-containing phosphorus was pretreated and colored blue by colorizing agent as a function of the phosphorus concentration. Absorbance of the blue-colored analyte was estimated by the LED and the photodetector such that the phosphorus concentration was quantitatively measured. This device can obtain a wide linear response range from 0.5 mg/L to 2.0 mg/L (R2 = 0.97381), and its performance can be improved by increasing the intensity of the UV light emitted from the LED array. Consequently, the performance of this miniaturized portable TP analysis device was found to be similar to that of a conventional TP analysis system; thus, it can be used in automated in situ TP analysis.

6.
J Nanosci Nanotechnol ; 21(7): 3707-3710, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715678

ABSTRACT

As hydrogen (H2) gas is highly reactive and explosive in ambient atmosphere, its prompt detection in industrial areas is imperative to prevent serious accidents. In particular, high-performance H2 sensors that can promptly detect even low-concentrations of H2 gas are necessary for safety. Carbon nanotubes (CNTs) have a large surface area and a high surface-to-volume ratio, and therefore, they are suitable for use as sensing materials in gas sensors. Moreover, gold, platinum, and palladium are known to be excellent catalyst metals that increase reactivity with H2 gas through the catalytic effect referred to as spill-over mechanism. In this study, a CNT felt sensor with a palladium (Pd) layer was fabricated, and its reactivity with H2 was evaluated. The sensitivity of a CNT felt sensor to H2 gas at room temperature was found to improve when coated with Pd layer.


Subject(s)
Nanotubes, Carbon , Palladium , Gold , Hydrogen , Platinum
7.
J Nanosci Nanotechnol ; 21(7): 3779-3784, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33715691

ABSTRACT

The effects of as-deposited iron (Fe) film thickness and the hydrogen (H2) annealing time on the spin-capability of carbon nanotube (CNT) forest have been studied. Both, the as-deposited Fe film thickness and the H2 annealing time significantly changed the morphology of Fe nanoparticles (NPs) after annealing process during the synthesis step of spin-capable carbon nanotube (SCNT) forest. The spin capability of CNT forests depended heavily on the different thicknesses of Fe films and the H2 annealing time. In conclusion, the spin-capability of CNT forest can be achieved by controlling the initial Fe film thickness and/or the H2 annealing time.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Forests , Gases , Iron
8.
J Nanosci Nanotechnol ; 21(8): 4400-4405, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33714334

ABSTRACT

Carbon monoxide (CO) is an odorless, colorless, tasteless, extremely flammable, and highly toxic gas. It is produced when there is insufficient oxygen supply during the combustion of carbon to produce carbon dioxide (CO2). CO is produced from operating engines, stoves, or furnaces. CO poisoning occurs when CO accumulates in the bloodstream and can result in severe tissue damage or even death. Many types of CO sensors have been reported, including electrochemical, semiconductor metal-oxide, catalytic combustion, thermal conductivity, and infrared absorption-type for the detection of CO. However, despite their excellent selectivity and sensitivity, issues such as complexity, power consumption, and calibration limit their applications. In this study, a fabricbased colorimetric CO sensor is proposed to address these issues. Potassium disulfitopalladate (II) (K2Pd(SO3)2) is dyed on a polyester fabric as a sensing material for selective CO detection. The sensing characteristics and performance are investigated using optical instruments such as RGB sensor and spectrometer. The sensor shows immediate color change when exposed to CO at a concentration that is even lower than 20 ppm before 2 min. The fast response time of the sensor is attributed to its high porosity to react with CO. This easy-to-fabricate and cost-effective sensor can detect and prevent the leakage of CO simultaneously with high sensitivity and selectivity toward CO.

9.
J Nanosci Nanotechnol ; 20(7): 4011-4014, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968415

ABSTRACT

The proposed study describes the development of a carbon nanotube (CNT)-based gas sensor capable of detecting the presence of hydrogen (H2) gas at room temperature. CNT yarn used in the proposed sensor was fabricated from synthesized CNT arrays. Subsequently, the yarn was treated by means of a simple one-step procedure, called acid treatment, to facilitate removal of impurities from the yarn surface and forming functional species. To verify the proposed sensor's effectiveness with regard to detection of H2 gas at room temperature, acid-treated CNT and pure yarns were fabricated and tested under identical conditions. Corresponding results demonstrate that compared to the untreated CNT yarn, the acid-treated CNT yarn exhibits higher sensitivity to the presence of H2 gas at room temperature. Additionally, the acid-treated CNT yarn was observed to demonstrate excellent selectivity pertaining to H2 gas.

10.
J Nanosci Nanotechnol ; 20(7): 4470-4473, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-31968499

ABSTRACT

Palladium-coated multi-walled carbon nanotube (Pd-MWCNT) nanocomposites have been experimentally proven to show highly improved hydrogen (H2) gas detection characteristics at room temperature when compared with single MWCNTs. In this context, we develop an efficient and convenient method for forming nanocomposites by coating Pd nanoparticles on an MWCNT film. Furthermore, we test the applicability of the nanocomposites as sensing materials in detecting H2 gas at room temperature in a reliable and sensitive manner in contrast with ordinary metal-oxidebased gas sensors that operate at high temperatures. We first study the detection efficacy of the Pd-MWCNT film relative to pure MWCNT film. Subsequently, we investigate the Pd-MWCNT sensor's sensitivity over time for different gas concentrations, the sensor response time, and sensor reproducibility and reliability under various conditions including bending tests. Our sensor exhibits stable reliable detection characteristics and excellent structural flexibility.

11.
J Nanosci Nanotechnol ; 20(1): 239-244, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31383161

ABSTRACT

Wind and solar energy are recognized as environmentally friendly energies. Wind energy is generated from the surface of the earth by solar energy. While wind energy can be regarded as "free" energy, generating it entails high installation cost as well as a large land footprint and noise, which is deemed to be a nuisance. In addition, maintenance costs are high. In this study, we propose a novel tree-wrapped wind energy harvester, which is inexpensive and easy to manufacture. Triboelectric generators follow simple principles and can be of various generator types. Triboelectric generators running on wind energy have been studied by many researchers. Our design comprises light and flexible tree-wrapped triboelectric generator modules. Multiple generator modules can be connected in parallel to harvest electrical energy. We show that the proposed generator can potentially harvest sufficient wind energy and can even be used in an urban environment by mounting them on trees in cities.

12.
Micromachines (Basel) ; 9(7)2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30424262

ABSTRACT

A thermal convection-based accelerometer was fabricated, and its characteristics were analyzed in this study. To understand the thermal convection of the accelerometer, the Grashof and Prandtl number equations were analyzed. This study conducted experiments to improve not only the sensitivity, but also the frequency band. An accelerometer with a more voluminous cavity showed better sensitivity. In addition, when the accelerometer used a gas medium with a large density and small viscosity, its sensitivity also improved. On the other hand, the accelerometer with a narrow volume cavity that used a gas medium with a small density and large thermal diffusivity displayed a larger frequency band. In particular, this paper focused on a Z-axis response to extend the performance of the accelerometer.

13.
Int J Neurosci ; 128(10): 899-905, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29384407

ABSTRACT

PURPOSE OF THE STUDY: Aucubin (ACB) is an iridoid glycoside with various biological activities. Previously, it is reported that ACB reduces cell survival and proliferation in many human tumors, whereas it facilitates cell survival and neuroprotection in damaged neuronal cells and disease models. However, its effects on cell survival in the non-proliferating or differentiated neurons are not known. MATERIALS AND METHODS: We examined whether ACB facilitated cell survival in differentiating neural precursor cells, HiB5, compared with the proliferating HiB5 cells at various concentrations. RESULTS: The cell viabilities were evaluated by measuring MTT values, cell numbers, amounts of neurotransmittersD1 and protein amounts of neuronal markers. Here, we showed that ACB promotes cell survival in differentiated neurons (10-200 µg/mL), but reduces it in proliferating NPCs (200-400 µg/mL). Protein amounts of neurofilament proteins, NF-H, NF-M, PSD-95 in post-synaptic density, GAP-43 in growing neurites and NeuN in differentiated neurons were upregulated by addition of ACB, indicating that cell survival increased in differentiated neurons, shown by immunoblot analysis. Especially, when PDGF was added into N2 media to facilitate neuronal differentiation of HiB5 cells, the viability of differentiated HiB5 cells was significantly elevated following the increase of ACB concentration. Furthermore, ACB promoted cell survival of specific neuron types, such as GABAergic neurons and glutamatergic neurons. When differentiated neurons were immunostained with markers for specific neurons, neuronal subtypes producing GABA and GAD 65/67 were immunostained more than subtypes producing glutamate and vGluT1. CONCLUSION: These results indicate that ACB improves neuronal cell survival in differentiated cells, suggesting it may be a therapeutic compound for neurodegenerative disorders.


Subject(s)
Cell Differentiation/drug effects , Iridoid Glucosides/pharmacology , Neural Stem Cells/drug effects , Neurons/drug effects , Animals , Cell Line , Cell Survival/drug effects , Rats
14.
Sensors (Basel) ; 17(8)2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28767051

ABSTRACT

This paper presents a thermal convection-based sensor fabricated using simple microelectromechanical systems (MEMS)-based processes. This sensor can be applied to both acceleration and inclination measurements without modifying the structure. Because the operating mechanism of the accelerometer is the thermal convection of a gas medium, a simple model is proposed and developed in which the performance of the thermal convection-based accelerometer is closely associated with the Grashof number, Gr and the Prandtl number, Pr. This paper discusses the experiments that were performed by varying several parameters such as the heating power, cavity size, gas media, and air pressure. The experimental results demonstrate that an increase in the heating power, pressure, and cavity size leads to an increase in the accelerometer sensitivity. However, an increase in the pressure and/or cavity size results in a decrease in the frequency bandwidth. This paper also discusses the fact that a working-gas medium with a large thermal diffusivity and small kinematic viscosity can widen the frequency bandwidth and increase the sensitivity, respectively.

15.
ACS Appl Mater Interfaces ; 7(5): 3050-7, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25619413

ABSTRACT

We report the properties of a hydrogen (H2) gas sensor based on platinum (Pt)-coated carbon nanotubes (CNTs) in this paper. To fabricate the Pt-CNT composite sensor, a highly aligned CNT sheet was prepared on a glass substrate from a spin-capable CNT forest, followed by electrobeam (e-beam) deposition of Pt layers onto the CNT sheet. To investigate the effect of Pt on the response of the sensor, Pt layers of different thicknesses were deposited on the CNT sheets. A Pt thickness of 6 nm yielded the highest response for H2 detection, whereas Pt layers thinner or thicker than 6 nm led to a reduction of the surface area for gas adsorption and, consequently, decreased response. The Pt-CNT composite sensor detects H2 concentrations of 3-33% at room temperature and shows reproducible behavior with fast response and recovery times.

16.
PLoS One ; 8(12): e81556, 2013.
Article in English | MEDLINE | ID: mdl-24324703

ABSTRACT

Soy (Glycine Max Merr, family Leguminosae) has been reported to possess anti-cancer, anti-lipidemic, estrogen-like, and memory-enhancing effects. We investigated the memory-enhancing effects and the underlying mechanisms of soyasaponin I (soya-I), a major constituent of soy. Impaired learning and memory were induced by injecting ibotenic acid into the entorhinal cortex of adult rat brains. The effects of soya-I were evaluated by measuring behavioral tasks and neuronal regeneration of memory-deficient rats. Oral administration of soya-I exhibited significant memory-enhancing effects in the passive avoidance, Y-maze, and Morris water maze tests. Soya-Ι also increased BrdU incorporation into the dentate gyrus and the number of cell types (GAD67, ChAT, and VGluT1) in the hippocampal region of memory-deficient rats, whereas the number of reactive microglia (OX42) decreased. The mechanism underlying memory improvement was assessed by detecting the differentiation and proliferation of neural precursor cells (NPCs) prepared from the embryonic hippocampus (E16) of timed-pregnant Sprague-Dawley rats using immunocytochemical staining and immunoblotting analysis. Addition of soya-Ι in the cultured NPCs significantly elevated the markers for cell proliferation (Ki-67) and neuronal differentiation (NeuN, TUJ1, and MAP2). Finally, soya-I increased neurite lengthening and the number of neurites during the differentiation of NPCs. Soya-Ι may improve hippocampal learning and memory impairment by promoting proliferation and differentiation of NPCs in the hippocampus through facilitation of neuronal regeneration and minimization of neuro-inflammation.


Subject(s)
Memory Disorders/drug therapy , Memory Disorders/physiopathology , Memory/drug effects , Nerve Regeneration/drug effects , Neuroprotective Agents/therapeutic use , Oleanolic Acid/analogs & derivatives , Saponins/pharmacology , Saponins/therapeutic use , Animals , Behavior, Animal/drug effects , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Hippocampus/pathology , Ibotenic Acid , Male , Microglia/drug effects , Microglia/pathology , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neurons/drug effects , Neurons/pathology , Neuroprotective Agents/pharmacology , Oleanolic Acid/administration & dosage , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , Pregnancy , Rats , Rats, Sprague-Dawley , Saponins/administration & dosage , Saponins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...