Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Res ; 237(Pt 1): 116743, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37500038

ABSTRACT

The intertidal sediment environment is dynamic and the biofilm bacterial community within it must constantly adapt, but an understanding of the differences in the biofilm bacterial community within sediments of different types is still relatively limited. The semi-enclosed Jiaozhou Bay has a temperate monsoon climate, with strong currents at the mouth of the bay. In this study, the structure of the bacterial community in Jiaozhou Bay sediment biofilms are described using high-throughput 16 S rRNA gene sequencing and the effects of temporal change and different sediment environment types are discussed. Alpha diversity was significantly higher in sandy samples than in muddy samples. Sandy sediments with increased heterogeneity promote bacterial aggregation. Beta diversity analysis showed significant differences between sediment types and between stations. Proteobacteria and Acidobacteria were significantly more abundant at ZQ, while Campilobacterota was significantly more abundant at LC. The relative abundances of Bacteroidetes, Campilobacterota, Firmicutes, and Chloroflexi were significantly higher in the muddy samples, while Actinobacteria and Proteobacteria were higher in the sandy samples. There were different phylum-level biomarkers between sediment types at different stations. There were also different patterns of functional enrichment in biogeochemical cycles between sediment types and stations with the former having more gene families that differed significantly, highlighting their greater role in determining bacterial function. Bacterial amplicon sequence variant variation between months was less than KEGG ortholog variation between months, presumably the temporal change had an impact on shaping the intertidal sediment bacterial community, although this was less clear at the gene family level. Random forest prediction yielded a combination of 43 family-level features that responded well to temporal change, reflecting the influence of temporal change on sediment biofilm bacteria.

2.
mSystems ; 8(2): e0121122, 2023 04 27.
Article in English | MEDLINE | ID: mdl-36815859

ABSTRACT

The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.


Subject(s)
Synechococcus , Ulva , Ulva/genetics , Ecosystem , Eutrophication , China
3.
Mar Pollut Bull ; 185(Pt A): 114192, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36356341

ABSTRACT

The 'taxonomic sufficiency' (TS) approach has been applied to algae, protists, invertebrates, and vertebrates, generally by aggregating species-level abundance data to a higher taxonomic level, where genus-level data are often highly correlated with species-level data and are a valid proxy level. The TS approach offers the possibility of a comparison of data from different geographical areas and highlights the effects of contaminants. The TS approach is stable in the face of different researchers and in the comparison of long-term biological survey data. The effectiveness of the TS approach may increase with increasing environmental gradients or spatial area. The TS approach should be avoided when the spatial area is small and small differences in species-level data are considered important, so as not to cancel out the distribution patterns specific to the local environment of the biological taxa.


Subject(s)
Environmental Monitoring , Invertebrates , Animals , Eukaryota , Plants , Environment , Biodiversity , Ecosystem
4.
Front Microbiol ; 13: 941323, 2022.
Article in English | MEDLINE | ID: mdl-35966700

ABSTRACT

Virioplankton and picoplankton are the most abundant marine biological entities on earth and mediate biogeochemical cycles in the Southern Ocean. However, understanding of their distribution and relationships with environmental factors is lacking. Here, we report on their distribution and relationships with environmental factors at 48 stations from 112.5° to 150°W and 67° to 75.5°S in the Amundsen Sea of West Antarctica. The epipelagic stations were grouped into four clusters based on the virio- and picoplankton composition and abundance. Clusters three and four, which were associated with the ice-edge blooms in the coastal and Amundsen Sea Polynya (ASP) areas, had high abundances of autotrophic picoeukaryotes; this resulted in subsequent high abundances of heterotrophic prokaryotes and viruses. Cluster two stations were in open oceanic areas, where the abundances of autotrophic and heterotrophic picoplankton were low. Cluster one stations were located between the areas of blooms and the oceanic areas, which had a low abundance of heterotrophic prokaryotes and picoeukaryotes and a high abundance of virioplankton. The abundance of viruses was significantly correlated with the abundances of autotrophic picoeukaryotes and Chl-a concentration in oceanic areas, although this reflected a time-lag with autotrophic picoeukaryote and heterotrophic prokaryotes abundances in ice-edge bloom areas. The upwelling of Circumpolar Deep Water (CDW) might have induced the high abundance of autotrophic picoeukaryotes in the epipelagic zone, and the sinking particulate organic carbon (POC) might have induced the high abundance of heterotrophic prokaryotes and virioplankton in the meso- and bathypelagic zones. This study shows that the summer distribution of virio- and picoplankton in the Amundsen Sea of West Antarctica was mainly controlled by upwelling of the CDW and the timing of ice-edge blooms.

5.
iScience ; 25(8): 104680, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35942087

ABSTRACT

Hadal ocean biosphere, that is, the deepest part of the world's oceans, harbors a unique microbial community, suggesting a potential uncovered co-occurring virioplankton assemblage. Herein, we reveal the unique virioplankton assemblages of the Challenger Deep, comprising 95,813 non-redundant viral contigs from the surface to the hadal zone. Almost all of the dominant viral contigs in the hadal zone were unclassified, potentially related to Alteromonadales and Oceanospirillales. 2,586 viral auxiliary metabolic genes from 132 different KEGG orthologous groups were mainly related to the carbon, nitrogen, sulfur, and arsenic metabolism. Lysogenic viral production and integrase genes were augmented in the hadal zone, suggesting the prevalence of viral lysogenic life strategy. Abundant rve genes in the hadal zone, which function as transposase in the caudoviruses, further suggest the prevalence of viral-mediated horizontal gene transfer. This study provides fundamental insights into the virioplankton assemblages of the hadal zone, reinforcing the necessity of incorporating virioplankton into the hadal biogeochemical cycles.

6.
Environ Sci Pollut Res Int ; 25(25): 24798-24806, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29926330

ABSTRACT

Harmful algal blooms (HABs) induced by Prorocentrum donghaiense occur frequently and cause a serious threat to the marine ecosystem. In this study, antialgal effects of α-linolenic acid (ALA) that is generally extracted from diverse macroalga on P. donghaiense were investigated. Specifically, the growth, cellular morphology and ultrastructure, reactive oxygen species (ROS) content, mitochondrial membrane potential (MMP), cytochrome C (Cyt-C), and caspase-9,3 activity of untreated and treated P. donghaiense were investigated. The results showed that ALA significantly inhibited the growth of P. donghaiense. Under ALA exposure, the cellular morphology and ultrastructure were damaged. ALA also induced ROS overproduction in the algal cells, decreased MMP, induced Cyt-C release, and activated caspase-9,3, which strongly relates to algal apoptosis. In summary, this study revealed the responses of morphology and physiology of P. donghaiense when exposed under ALA, and shows the potential of biotechnology on controlling P. donghaiense.


Subject(s)
Dinoflagellida/drug effects , Disinfectants/toxicity , Harmful Algal Bloom , alpha-Linolenic Acid/toxicity , Dinoflagellida/growth & development , Ecosystem
7.
Sci Total Environ ; 631-632: 1415-1420, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29727965

ABSTRACT

Algicidal bacteria associated with Karenia mikimotoi have been isolated, yet the distribution of the algicidal bacteria has been rarely studied. Here, we postulated and demonstrated that terrestrial environment harbors diverse algicidal bacteria, which can survive in seawater along water flowing into marine and suppress Karenia mikimotoi. In summary, 9 and 5 bacteria with algicidal activity on Karenia mikimotoi were isolated from seawater and estuarine soil, respectively. Similar with the marine bacteria (Alteromonas sp., Halomonas sp., Marinobacter sp., Paracoccus sp., Rhodobacteraceae, Idiomarina sp.), the soil strains (Pseudoalteromonas sp. and Flavobaterium sp.) showed high mortality in Karenia mikimotoi with the inhibitory rate of 87% and 93.5%, respectively, after two days co-cultivation. Algicidal activity of the two strains was detected in the cell-free filtrate not in bacterial cells. The results suggest that algicidal bacteria associated with Karenia mikimotoi widely exist in terrestrial and marine environments, and have application potential on controlling Karenia mikimotoi.


Subject(s)
Bacteria/growth & development , Harmful Algal Bloom , Seawater/microbiology , Water Microbiology , Bacteria/isolation & purification , Dinoflagellida , Disinfectants , Environmental Monitoring , Seawater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...