Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 250: 121013, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38118252

ABSTRACT

The ecological risk of tritiated wastewater into the environment has attracted much attention. Assessing the ecological risk of tritium-containing pollution is crucial by studying low-activity tritium exposure's environmental and biological effects on freshwater micro-environment and the enrichment potential of organically bound tritium (OBT) in microalgae and aquatic plants. The impact of tritium-contaminated wastewater on the microenvironment of freshwater systems was analyzed using microcosm experiments to simulate tritium pollution in freshwater systems. Low activity tritium pollution (105 Bq/L) induced differences in microbial abundance, with Proteobacteria, Bacteroidota, and Desulfobacterota occupying important ecological niches in the water system. Low activity tritium (105-107 Bq/L) did not affect the growth of microalgae and aquatic plants, but OBT was significantly enriched in microalgae and two aquatic plants (Pistia stratiotes, Spirodela polyrrhiza), with the enrichment coefficients of 2.08-3.39 and 1.71-2.13, respectively. At the transcriptional level, low-activity tritium (105 Bq/L) has the risk of interfering with gene expression in aquatic plants. Four dominant cyanobacterial strains (Leptolyngbya sp., Synechococcus elongatus, Nostoc sp., and Anabaena sp.) were isolated and demonstrated good environmental adaptability to tritium pollution. Environmental factors can modify the tritium accumulation potential in cyanobacteria and microalgae, theoretically enhancing food chain transfer.


Subject(s)
Microalgae , Tritium/analysis , Wastewater , Environmental Pollution/analysis , Fresh Water/analysis
2.
Environ Pollut ; 285: 117478, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34087636

ABSTRACT

This experiment was conducted to evaluate the ecotoxicity of typical explosives and their mechanisms in the soil microenvironment. Here, TNT (trinitrotoluene), RDX (cyclotrimethylene trinitramine), and HMX (cyclotetramethylene tetranitramine) were used to simulate the soil pollution of single explosives and their combination. The changes in soil enzyme activity and microbial community structure and function were analyzed in soil, and the effects of explosives exposure on the soil metabolic spectrum were revealed by non-targeted metabonomics. TNT, RDX, and HMX exposure significantly inhibited soil microbial respiration and urease and dehydrogenase activities. Explosives treatment reduced the diversity and richness of the soil microbial community structure, and the microorganisms able to degrade explosives began to occupy the soil niche, with the Sphingomonadaceae, Actinobacteria, and Gammaproteobacteria showing significantly increased relative abundances. Non-targeted metabonomics analysis showed that the main soil differential metabolites under explosives stress were lipids and lipid-like molecules, organic acids and derivatives, with the phosphotransferase system (PTS) pathway the most enriched pathway. The metabolic pathways for carbohydrates, lipids, and amino acids in soil were specifically inhibited. Therefore, residues of TNT, RDX, and HMX in the soil could inhibit soil metabolic processes and change the structure of the soil microbial community.


Subject(s)
Explosive Agents , Microbiota , Soil Pollutants , Trinitrotoluene , Azocines , Explosive Agents/analysis , Explosive Agents/toxicity , Metabolome , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Triazines/analysis , Trinitrotoluene/analysis , Trinitrotoluene/toxicity
3.
Chemosphere ; 281: 130842, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34023765

ABSTRACT

The aim of this study was to reveal the mechanism underlying the toxicity of TNT (trinitrotoluene), RDX (cyclotrimethylene trinitroamine), and HMX (cyclotetramethylene tetranitramine) explosives pollution in plants. Here, the effects of exposure to these three explosives were examined on chlorophyll fluorescence, antioxidant enzyme activity, and the metabolite spectrum in alfalfa (Medicago sativa) plants. The degradation rates for TNT, RDX, and HMX by alfalfa were 26.8%, 20.4%, and 18.4%, respectively, under hydroponic conditions. TNT caused damage to the microstructure of the plant roots and inhibited photosynthesis, whereas RDX and HMX induced only minor changes. Exposure to any of the three explosives caused disturbances in the oxidase system. Non-targeted metabolomics identified a total of 6185 metabolites. TNT exposure induced the appearance of 609 differentially expressed metabolites (189 upregulated, 420 downregulated), RDX exposure induced 197 differentially expressed metabolites (155 upregulated and 42 downregulated), and HMX induced 234 differentially expressed metabolites (132 upregulated and 102 downregulated). Of these differentially expressed metabolites, lipids and lipid-like molecules were the main metabolites induced by explosives poisoning. TNT mainly caused significant changes in the alanine, aspartate, and glutamate metabolism metabolic pathways, RDX mainly caused disorders in the arginine biosynthesis metabolic pathway, and HMX disrupted the oxidative phosphorylation metabolic pathway. Taken together, the results show that exposure to TNT, RDX, and HMX leads to imbalances in plant photosynthetic characteristics and antioxidant enzyme systems, changes the basic metabolism of plants, and has significant ecotoxicity effects.


Subject(s)
Trinitrotoluene , Azocines , Medicago sativa , Triazines , Trinitrotoluene/toxicity
4.
J Environ Manage ; 288: 112247, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33765573

ABSTRACT

This study aims to reveal the biodegradation and interaction mechanism of cyclotetramethylenete-tranitramine (HMX) by a newly isolated bacteria. In this study, a bacterial strain (Bacillus aryabhattai) with high efficiency for HMX degradation was used as the test organism to analyze the changes in growth status, cell function, and mineral metabolism following exposure to different stress concentrations (0 and 5 mg L-1) of HMX. Non-targeted metabonomics was used to reveal the metabolic response of this strain to HMX stress. The results showed that when the HMX concentration was 5 mg L-1, the removal rate of HMX within 24 h of inoculation with Bacillus aryabhatta was as high as 90.5%, the OD600 turbidity was 1.024, and the BOD5 was 225 mg L-1. Scanning electron microscope (SEM) images showed that the morphology of bacteria was not obvious Variety, Fourier transform infrared spectroscopy (FTIR) showed that the cell surface -OH functional groups drifted, and ICP-MS showed that the cell mineral element metabolism was disturbed. Non-targeted metabonomics showed that HMX induced the differential expression of 254 metabolites (133 upregulated and 221 downregulated). The main differentially expressed metabolites during HMX stress were lipids and lipid-like molecules, and the most significantly affected metabolic pathway was purine metabolism. At the same time, the primary metabolic network of bacteria was disordered. These results confirmed that Bacillus aryabhattai has a high tolerance to HMX and can efficiently degrade HMX. The degradation mechanism involves the extracellular decomposition of HMX and transformation of the degradation products into intracellular purines, amino sugars, and nucleoside sugars that then participate in cell metabolism.


Subject(s)
Bacillus , Azocines , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL
...