Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4489, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802385

ABSTRACT

The sensitivity of soil organic carbon (SOC) decomposition in seasonally frozen soils, such as alpine ecosystems, to climate warming is a major uncertainty in global carbon cycling. Here we measure soil CO2 emission during four years (2018-2021) from the whole-soil warming experiment (4 °C for the top 1 m) in an alpine grassland ecosystem. We find that whole-soil warming stimulates total and SOC-derived CO2 efflux by 26% and 37%, respectively, but has a minor effect on root-derived CO2 efflux. Moreover, experimental warming only promotes total soil CO2 efflux by 7-8% on average in the meta-analysis across all grasslands or alpine grasslands globally (none of these experiments were whole-soil warming). We show that whole-soil warming has a much stronger effect on soil carbon emission in the alpine grassland ecosystem than what was reported in previous warming experiments, most of which only heat surface soils.

2.
Glob Chang Biol ; 30(1): e17033, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273530

ABSTRACT

Global climate warming could affect the methane (CH4 ) and nitrous oxide (N2 O) fluxes between soils and the atmosphere, but how CH4 and N2 O fluxes respond to whole-soil warming is unclear. Here, we for the first time investigated the effects of whole-soil warming on CH4 and N2 O fluxes in an alpine grassland ecosystem on the Tibetan Plateau, and also studied the effects of experimental warming on CH4 and N2 O fluxes across terrestrial ecosystems through a global-scale meta-analysis. The whole-soil warming (0-100 cm, +4°C) significantly elevated soil N2 O emission by 101%, but had a minor effect on soil CH4 uptake. However, the meta-analysis revealed that experimental warming did not significantly alter CH4 and N2 O fluxes, and it may be that most field warming experiments could only heat the surface soils. Moreover, the warming-induced higher plant litter and available N in soils may be the main reason for the higher N2 O emission under whole-soil warming in the alpine grassland. We need to pay more attention to the long-term response of greenhouse gases (including CH4 and N2 O fluxes) from different soil depths to whole-soil warming over year-round, which could help us more accurately assess and predict the ecosystem-climate feedback under realistic warming scenarios in the future.


Subject(s)
Ecosystem , Soil , Grassland , Carbon Dioxide/analysis , Nitrous Oxide/analysis , Methane
3.
Ecology ; 104(4): e3981, 2023 04.
Article in English | MEDLINE | ID: mdl-36695044

ABSTRACT

Tree roots not only acquire readily-usable soil nutrients but also affect microbial decomposition and manipulate nutrient availability in their surrounding soils, that is, rhizosphere effects (REs). Thus, REs challenge the basic understanding of how plants adapt to the environment and co-exist with other species. Yet, how REs vary among species in response to species-specific bulk soil nutrient cycling is not well-known. Here, we studied how plant-controlled microbial decomposition activities in rhizosphere soils respond to those in their corresponding bulk soils and whether these relations depend on species-specific nutrient cycling in the bulk soils. We targeted 55 woody species of different clades and mycorrhizal types in three contrasting biomes, namely a temperate forest, a subtropical forest, and a tropical forest. We found that microbial decomposition activities in rhizosphere soils responded linearly to those in their corresponding bulk soils at the species level. Thereafter, we found that REs (parameters in rhizosphere soils minus those in corresponding bulk soils) of microbial decomposition activities had negative linear correlations with microbial decomposition activities in corresponding bulk soils. A multiple factor analysis revealed that soil organic carbon, total nitrogen, and soil water content favored bulk soil decomposition activities in all three biomes, showing that the magnitude of REs varied along a fast-slow nutrient cycling spectrum in bulk soils. The species of fast nutrient cycling in their bulk soils tended to have smaller or even negative REs. Therefore, woody plants commonly utilize both positive and negative REs as a nutrient-acquisition strategy. Based on the trade-offs between REs and other nutrient-acquisition strategies, we proposed a push and pull conceptual model which can bring plant nutrient-acquisition cost and plant carbon economics spectrum together in the future. This model will facilitate not only the carbon and nutrient cycling but also the mechanisms of species co-existence in forest ecosystems.


Subject(s)
Ecosystem , Rhizosphere , Soil , Carbon/analysis , Plants , Nutrients/analysis , Soil Microbiology , Plant Roots
4.
Glob Chang Biol ; 28(10): 3426-3440, 2022 05.
Article in English | MEDLINE | ID: mdl-35092113

ABSTRACT

Global changes can alter plant inputs from both above- and belowground, which, thus, may differently affect soil carbon and microbial communities. However, the general patterns of how plant input changes affect them in forests remain unclear. By conducting a meta-analysis of 3193 observations from 166 experiments worldwide, we found that alterations in aboveground litter and/or root inputs had profound effects on soil carbon and microbial communities in forest ecosystems. Litter addition stimulated soil organic carbon (SOC) pools and microbial biomass, whereas removal of litter, roots or both (no inputs) decreased them. The increased SOC under litter addition suggested that aboveground litter inputs benefit SOC sequestration despite accelerated decomposition. Unlike root removal, litter alterations and no inputs altered particulate organic carbon, whereas all detrital treatments did not significantly change mineral-associated organic carbon. In addition, detrital treatments contrastingly altered soil microbial community, with litter addition or removal shifting it toward fungi, whereas root removal shifting it toward bacteria. Furthermore, the responses of soil carbon and microbial biomass to litter alterations positively correlated with litter input rate and total litter input, suggesting that litter input quantity is a critical controller of belowground processes. Taken together, these findings provide critical insights into understanding how altered plant productivity and allocation affects soil carbon cycling, microbial communities and functioning of forest ecosystems under global changes. Future studies can take full advantage of the existing plant detritus experiments and should focus on the relative roles of litter and roots in forming SOC and its fractions.


Subject(s)
Microbiota , Soil , Biomass , Carbon , Ecosystem , Forests , Minerals , Soil Microbiology
5.
New Phytol ; 234(3): 837-849, 2022 05.
Article in English | MEDLINE | ID: mdl-34873713

ABSTRACT

The adoption of diverse resource acquisition strategies is critical for plant growth and species coexistence. Root phosphatase is of particular importance in the acquisition of soil phosphorus (P), yet it is often overlooked in studies of root trait syndromes. Here, we evaluated the role of root phosphatase activity (RPA) within the root economics space and the order-based variation of RPA, as well as the correlations between RPA and a suite of leaf traits and soil properties over a range of evergreen tree species in a subtropical forest. Root phosphatase activity exhibited a high degree of inter-specific variation. We found that there were two leading dimensions of the multidimensional root economics space, the root diameter-specific root length axis (collaboration trait gradient) and the root tissue density-root nitrogen concentration axis (classical trait gradient), and RPA aligned with the former. Root phosphatase activity is used as a 'do it yourself' strategy of soil P acquisition, and was found to be inversely correlated with mycorrhizal colonization, which suggests a trade-off in plant P acquisition strategies. Compared with soil and foliar nutrient status, root traits mattered most for the large inter-specific changes in RPA. Furthermore, RPA generally decreased from first- to third-order roots. Taken together, such diverse P-acquisition strategies are conducive to plant coexistence within local forest communities. The use of easily measurable root traits and their tight correlations with RPA could be a feasible and promising approach to estimating species-specific RPA values, which would be helpful for better understanding plant P acquisition and soil P cycling.


Subject(s)
Mycorrhizae , Plant Roots , Phosphoric Monoester Hydrolases , Soil , Trees
6.
Glob Chang Biol ; 28(4): 1618-1629, 2022 02.
Article in English | MEDLINE | ID: mdl-34755425

ABSTRACT

The alpine meadow ecosystem on the Qinghai-Tibetan Plateau (QTP) is very sensitive to warming and plays a key role in regulating global carbon (C) cycling. However, how warming affects the soil organic carbon (SOC) pool and related C inputs and outputs in alpine meadow ecosystems on the QTP remains unclear. Here, we combined two field experiments and a meta-analysis on field experiments to synthesize the responses of the SOC pool and related C cycling processes to warming in alpine meadow ecosystems on the QTP. We found that the SOC content of surface soil (0-10 cm) showed a minor response to warming, but plant respiration was accelerated by warming. In addition, the warming effect on SOC was not correlated with experimental and environmental variables, such as the method, magnitude and duration of warming, initial SOC content, mean annual temperature, and mean annual precipitation. We conclude that the surface SOC content is resistant to climate warming in alpine meadow ecosystems on the QTP.


Subject(s)
Carbon , Soil , Carbon/analysis , Ecosystem , Grassland , Tibet
7.
Glob Chang Biol ; 27(1): 190-201, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33058350

ABSTRACT

Root respiration is a critical physiological trait involved in root resource acquisition strategies, yet it is less represented in root trait syndrome. Here we compiled a large dataset of root respiration associated with root chemical and morphological traits from 245 plant species. Our results demonstrated that root respiration correlated positively with root nitrogen concentration (RNC) and negatively with root tissue density (RTD) across and within woody and non-woody species. However, the relationships between root respiration and specific root length (SRL) and root diameter (RD) were weak or even insignificant. Such root respiration-traits relationships were not completely in line with predictions by the root economics spectrum (RES). Furthermore, the principal component analysis showed that root trait syndrome was multidimensional. Root respiration was associated more strongly with the RNC-RTD axis (the classical RES) than with the orthogonal SRL-RD axis for woody species, but not for non-woody species. Collectively, the linkages of root physiological, chemical, and morphological traits provide a better understanding of root trait covariation and root resource acquisition strategies.


Subject(s)
Plant Roots , Plants , Phenotype , Respiration
8.
New Phytol ; 229(1): 259-271, 2021 01.
Article in English | MEDLINE | ID: mdl-32772392

ABSTRACT

Root exudation stimulates microbial decomposition and enhances nutrient availability to plants. It remains difficult to measure and predict this carbon flux in natural conditions, especially for mature woody plants. Based on a known conceptual framework of root functional traits coordination, we proposed that root functional traits may predict root exudation. We measured root exudation and other seven root morphological/chemical/physiological traits for 18 coexisting woody species in a deciduous-evergreen mixed forest in subtropical China. Root exudation, respiration, diameter and nitrogen (N) concentration all exhibited significant phylogenetic signals. We found that root exudation positively correlated with competitive traits (root respiration, N concentration) and negatively with a conservative trait (root tissue density). Furthermore, these relationships were independent of phylogenetic signals. A principal component analysis showed that root exudation and morphological traits loaded on two perpendicular axes. Root exudation is a competitive trait in a multidimensional fine-root functional coordination. The metabolic dimension on which root exudation loaded was relatively independent of the morphological dimension, indicating that increasing nutrient availability by root exudation might be a complementary strategy for plant nutrient acquisition. The positive relationship between root exudation and root respiration and N concentration is a promising approach for the future prediction of root exudation.


Subject(s)
Forests , Plant Roots , China , Nitrogen , Phylogeny
9.
Glob Chang Biol ; 26(12): 7229-7241, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32981218

ABSTRACT

Arbuscular mycorrhizal (AM) fungi play important roles in carbon (C), nitrogen (N) and phosphorus (P) cycling of terrestrial ecosystems. The impact of increasing N deposition on AM fungi will inevitably affect ecosystem processes. However, generalizable patterns of how N deposition affects AM fungi remains poorly understood. Here we conducted a global-scale meta-analysis from 94 publications and 101 sites to investigate the responses of AM fungi to N addition, including abundance in both intra-radical (host roots) and extra-radical portion (soil), richness and diversity. We also explored the mechanisms of N addition affecting AM fungi by the trait-based guilds method. Results showed that N addition significantly decreased AM fungal overall abundance (-8.0%). However, the response of abundance in intra-radical portion was not consistent with that in extra-radical portion: root colonization decreased (-11.6%) significantly, whereas extra-radical hyphae length density did not change significantly. Different AM fungal guilds showed different responses to N addition: both the abundance (spore density) and relative abundance of the rhizophilic guild decreased significantly under N addition (-29.8% and -12.0%, respectively), while the abundance and relative abundance of the edaphophilic guild had insignificant response to N addition. Such inconsistent responses of rhizophilic and edaphophilic guilds were mainly moderated by the change of soil pH and the response of root biomass, respectively. Moreover, N addition had an insignificant negative effect on AM fungal richness and diversity, which was strongly related with the relative availability of soil P (i.e. soil available N/P ratio). Collectively, this meta-analysis highlights that considering trait-based AM fungal guilds, soil P availability and host plant C allocation can greatly improve our understanding of the nuanced dynamics of AM fungal communities under increasing N deposition.


Subject(s)
Mycorrhizae , Ecosystem , Fungi , Nitrogen , Plant Roots , Soil , Soil Microbiology
10.
Glob Chang Biol ; 26(4): 2656-2667, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31930624

ABSTRACT

Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta-analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2 O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2 O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2 O and CH4 effluxes were related to the changes in soil nitrate and soil aeration-related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.

SELECTION OF CITATIONS
SEARCH DETAIL
...