Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 474: 134851, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852253

ABSTRACT

Nanoparticle (NP) pollution has negative impacts and is a major global environmental problem. However, the molecular response of alfalfa (Medicago sativa L.) to titanium dioxide nanoparticles (TiO2 NPs) is limited. Herein, the dual effects of TiO2 NPs (0-1000 mg L-1) on carbon (C) and nitrogen (N) metabolisms in alfalfa were investigated. The results showed that 500 mg L-1 TiO2 NPs (Ti-500) had the highest phytotoxicity in the C/N metabolizing enzymes; and it significantly increased total soluble sugar, starch, sucrose, and sucrose-phosphate synthase. Furthermore, obvious photosynthesis responses were found in alfalfa exposed to Ti-500. By contrast, 100 mg L-1 TiO2 NPs (Ti-100) enhanced N metabolizing enzymes. RNA-seq analyses showed 4265 and 2121 differentially expressed genes (DEGs) in Ti-100 and Ti-500, respectively. A total of 904 and 844 differentially expressed proteins (DEPs) were identified in Ti-100 and Ti-500, respectively. Through the physiological, transcriptional, and proteomic analyses, the DEGs and DEPs related to C/N metabolism, photosynthesis, chlorophyll synthesis, starch and sucrose metabolism, and C fixation in photosynthetic organisms were observed. Overall, TiO2 NPs at low doses improve photosynthesis and C/N regulation, but high doses can cause toxicity. It is valuable for the safe application of NPs in agriculture.

2.
J Hazard Mater ; 469: 133917, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38432092

ABSTRACT

Cadmium (Cd) can induce programmed cell death (PCD) and zinc oxide nanoparticles (ZnO NPs) effectively alleviate Cd stress. However, the mechanisms of ZnO NPs-mediated Cd detoxification in alfalfa (Medicago sativa L.) are limited. The pot experiment was conducted with Cd soil (19.2 mg kg-1) and foliar ZnO NPs (100 mg L-1) on alfalfa. The results showed that Cd reduced shoot height and biomass, and accumulated reactive oxygen species (ROS), resulting in oxidative stress and further PCD (plasmolysis, cytosolic and nuclear condensation, subcellular organelle swelling, and cell death). ZnO NPs positively regulated the antioxidant system, cell membrane stability, ultrastructure, osmotic homeostasis, and reduced PCD, indicating a multi-level coordination for the increased Cd tolerance. ZnO NPs up-regulated the activity and expression of antioxidant enzymes and regulated PCD-related genes to scavenge ROS and mitigate PCD caused by Cd. The genes related to ZnO NPs-mediated Cd detoxification were significantly enriched in cell death and porphyrin and chlorophyll metabolism. Overall, it elucidates the molecular basis of ZnO NPs-mediated Cd-tolerance by promoting redox and osmotic homeostasis, maintaining cellular ultrastructure, reducing Cd content, and attenuating Cd-induced PCD. it provides a promising application of ZnO NPs to mitigate Cd phytotoxicity and the related cellular and biochemical mechanisms. ENVIRONMENTAL IMPLICATION: Cd, one of the most toxic heavy metals, has caused serious environmental pollution. ZnO NPs can effectively alleviate Cd stress on plants and the environment. This study revealed that foliar-applied ZnO NPs alleviate Cd toxicity by mitigating the oxidative damage and regulating Cd-induced PCD via morphological, physiological, and transcriptomic levels. The findings elucidated the molecular basis of ZnO NPs-mediated Cd tolerance by promoting osmotic and redox homeostasis, reducing Cd content and lipid peroxidation, attenuating Cd-induced PCD features, and altering PCD-related genes in alfalfa. The study laid a theoretical foundation for the safe production of alfalfa under Cd pollution.


Subject(s)
Nanoparticles , Soil Pollutants , Zinc Oxide , Zinc Oxide/chemistry , Cadmium/metabolism , Medicago sativa , Antioxidants/pharmacology , Reactive Oxygen Species/pharmacology , Soil Pollutants/metabolism , Nanoparticles/chemistry , Apoptosis
3.
Ecotoxicol Environ Saf ; 272: 116059, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309235

ABSTRACT

Alfalfa (Medicago sativa L.) is a feed crop due to its rich nutrition and high productivity. The utilization of titanium oxide nanoparticles (TiO2 NPs) brings benefits to agricultural production but also has potential hazards. To investigate the duality and related mechanism of TiO2 NPs on alfalfa, its different doses including 0, 50, 100, 200, 500, and 1000 mg L- 1 (CK, Ti-50, Ti-100, Ti-200, Ti-500, and Ti-1000) were sprayed on leaves. The results showed that greater doses of TiO2 NPs (500 and 1000 mg L-1) negatively affected the physiological parameters, including morphology, biomass, leaf ultrastructure, stomata, photosynthesis, pigments, and antioxidant ability. However, 100 mg L-1 TiO2 NPs revealed an optimal positive effect; compared with the CK, it dramatically increased plant height, fresh weight, and dry weight by 22%, 21%, and 41%, respectively. Additionally, TiO2 NPs at low doses significantly protected leaf tissue, promoted stomatal opening, and enhanced the antioxidant system; while higher doses had phytotoxicity. Hence, TiO2 NPs are dose-dependent on alfalfa. The transcriptomic analysis identified 4625 and 2121 differentially expressed genes (DEGs) in the comparison of CK vs. Ti-100 and CK vs. Ti-500, respectively. They were mainly enriched in photosynthesis, chlorophyll metabolism, and energy metabolism. Notably, TiO2 NPs-induced phytotoxicity on photosynthetic parameters happened concurrently with the alterations of the genes involved in the porphyrin and chlorophyll metabolism and carbon fixation in photosynthetic organisms in the KEGG analysis. Similarly, it affected the efficiency of alfalfa energy transformation processes, including pyruvate metabolism and chlorophyll synthesis. Several key related genes in these pathways were validated. Therefore, TiO2 NPs have positive and toxic effects by regulating morphology, leaf ultrastructure, stomata, photosynthesis, redox homeostasis, and genes related to key pathways. It is significant to understand the duality of TiO2 NPs and cultivate varieties resistant to nanomaterial pollution.


Subject(s)
Medicago sativa , Nanoparticles , Medicago sativa/metabolism , Antioxidants/metabolism , Nanoparticles/toxicity , Gene Expression Profiling , Chlorophyll/metabolism
4.
Microbiol Spectr ; 11(4): e0534322, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37439665

ABSTRACT

Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.


Subject(s)
Microbiota , Propionates , Animals , Propionates/pharmacology , Goats/metabolism , Rumen/microbiology , Antioxidants/metabolism , Multiomics , Fatty Acids, Volatile/metabolism , Epithelium/microbiology , Butyric Acid , Ruminants , Homeostasis
5.
Int J Biol Macromol ; 244: 125306, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37315673

ABSTRACT

CD36 functions as a receptor for long-chain fatty acids, promoting the absorption and transport of long-chain unsaturated fatty acids. However, the regulatory influence of upstream circRNAs or miRNAs on its expression in cow mammary gland remains unclear. Herein, we performed high-throughput sequencing to screen for differentially expressed miRNAs and mRNAs in bovine mammary tissue during the late-lactation and the dry period to screen and conducted bioinformatics analysis to identify 420 miRNA/mRNA pairs, including miR-145/CD36. Experimental results indicate that miR-145 can directly target CD36 and inhibit its expression. Additionally, the circRNA-02191 sequence is predicted to contain a miR-145 binding site. As shown by dual luciferase reporter system detection, circRNA-02191 bound to miR-145 and its overexpression significantly reduced the expression of miR-145. Furthermore, the overexpression of miR-145 inhibited triglyceride accumulation, while circRNA-02191 enhanced the expression of the miR-145 target gene CD36. The above results indicate that circRNA-02191 can regulate triglyceride and fatty acid components by binding miR-145 and subsequently alleviating the inhibitory effect of miR-145 on the expression of CD36. Taken together, these findings present a novel approach to improve milk quality by analyzing the regulatory effect and mechanism regulating the circ02191/miR-145/CD36 pathway on fatty acid synthesis in the mammary gland of dairy cows.


Subject(s)
MicroRNAs , RNA, Circular , Female , Cattle , Animals , RNA, Circular/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Fatty Acids/metabolism , Triglycerides/metabolism , RNA, Messenger/metabolism , Fatty Acids, Unsaturated
6.
Vet Med Sci ; 9(3): 1359-1368, 2023 05.
Article in English | MEDLINE | ID: mdl-36977209

ABSTRACT

BACKGROUND: Escherichia coli infections are common in Xinjiang, a major region of cattle and sheep breeding in China. Therefore, strategies are required to control E. coli. The aim of this study was to investigate the phylogenetic groups, virulence genes, and antibiotic resistance characteristics of E. coli isolates. METHODS: In this study, 116 tissue samples were collected from the organs of cattle and sheep that were suspected of having E. coli infections between 2015 and 2019. Bacteria in the samples were identified using a biochemical identification system and amplification of 16S rRNA, and the phylogenetic groupings of E. coli isolates were determined by multiplex polymerase chain reactions. In addition, PCR detection and analysis of virulence factors, antibiotic resistance genes, and drug-resistant phenotypes of E. coli isolates were performed. RESULTS: A total of 116 pathogenic E. coli strains belonging to seven phylogenetic groups were isolated, with the majority of isolates in groups A and B1. Among the virulence genes, curli-encoding crl had the highest detection rate of 97.4%, followed by hemolysin-encoding hlyE with the detection rate of 94.82%. Antimicrobial susceptibility test results indicated that the isolates had the highest rates of resistance against streptomycin (81.9%). CONCLUSION: These characteristics complicate the prevention and treatment of E. coli-related diseases in Xinjiang.


Subject(s)
Cattle Diseases , Escherichia coli Infections , Sheep Diseases , Animals , Cattle , Sheep , Escherichia coli , Phylogeny , RNA, Ribosomal, 16S , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , China/epidemiology , Multiplex Polymerase Chain Reaction/veterinary , Molecular Typing/veterinary , Drug Resistance , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Sheep Diseases/epidemiology
7.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: mdl-36298776

ABSTRACT

Bovine parainfluenza virus 3 (BPIV3) is one of several viruses that contribute to bovine respiratory disease complex (BRDC). During this study, isolation of BPIV3 was attempted from 20 PCR-positive swabs by Madin-Darby Bovine Kidney (MDBK) cells. Nine samples showed obvious cytopathic lesions identified as BPIV3 by reverse-transcription polymerase chain reaction amplification and sequencing. The genomes of isolates XJ21032-1 and XJ20055-3 were sequenced using Illumina sequencing technology and determined to have lengths of 15,512 bp and 15,479 bp, respectively. Phylogenetic analysis revealed that isolate XJ21032-1 was genotype B, and isolate XJ20055-3 was genotype C. In addition, the two isolates had multiple amino acid changes in nucleocapsid protein, fusion protein, and hemagglutinin/neuraminidase, major antigenic proteins. This allows the further recognition of the presence of BPIV3 type B in Chinese cattle herds. We hope this will help trace the origin of BPIV3, improve the understanding of differences between genotypes, and provide data support for vaccine development.


Subject(s)
Parainfluenza Virus 3, Bovine , Paramyxoviridae Infections , Cattle , Animals , Parainfluenza Virus 3, Bovine/genetics , Phylogeny , Hemagglutinins , Neuraminidase/genetics , Genotype , Nucleocapsid Proteins/genetics , Amino Acids/genetics
8.
Front Plant Sci ; 13: 882601, 2022.
Article in English | MEDLINE | ID: mdl-35845670

ABSTRACT

Elymus sibiricus L. is a perennial allotetraploid belonging to Triticeae of Poaceae, Elymus L., as the type species of genus Elymus L. The existing geographical distribution pattern and genetic spatial structure of E. sibiricus on Qinghai-Tibetan Plateau (QTP) are not yet clear. In this study, population genetic structure and demography history of 216 individuals from 44 E. sibiricus populations on QTP were studied used specific-locus amplified fragment sequencing (SLAF-seq). The result of genetic diversity showed that there was no single genetic diversity center was observed across all E. sibiricus populations. The results of genetic variation showed that 44 populations were clearly divided into the following three groups: Qinghai Plateau (Group I), South Tibet (Group II), and Hengduan Mountains (Group III). From the three analyses of AMOVA, Mantel test and Treemix, strong genetic differentiation across all populations and low genetic differentiation among populations within three groups. Molecular dating indicated that E. sibiricus diverged at 16.08 Ma (during the early Miocene) can be linked to the Himalayan Motion stage of QTP uplift. It is speculated that the reasons affecting the current phylogeographical pattern are as follows: (1) The environmental changes due to the uplift of the QTP; (2) The geographic distance between the populations (Groups I and III are close in geographic distance, and gene flow are frequent); (3) Geographical barriers (the Tanggula and Bayangela Mountains between Groups I and II). This study provides new evidence and historical perspective to the future exploration of the evolution and geographic distribution pattern of Elymus L.

9.
Front Vet Sci ; 9: 875729, 2022.
Article in English | MEDLINE | ID: mdl-35400091

ABSTRACT

The digestive tract microorganisms play a very important role in the host's nutrient intake, environmental suitability, and affect the host's physiological mechanism. Previous studies showed that in different seasons, mammalian gut microbes would be different. However, most of them are concentrated in wild animals. It remains unclear how seasonal change affects the gut microbes of Chinese merino fine-wool Sheep. Therefore, in this experiment, we continuously collected blood and feces samples of 50 Chinese merino fine-wool sheep in different seasons, measured the physiological indicators of blood, and passed 16S rRNA amplicon sequencing, determined the microbial community structure of fecal microorganisms and predicted flora function by PICRUSt. The results of blood physiological indicators showed that WBC, Neu and Bas in spring were significantly higher than those of other seasons. Fecal microbial sequencing revealed seasonal changes in gut microbial diversity and richness. Among them, Chinese merino fine-wool sheep had the highest gut microbes in summer. Firmicutes and Bacteroidetes were the dominant phyla, and they were unaffected by seasonal fluctuations. LEfSE analysis was used to analyze representative microorganisms in different seasons. The Lachnospiraceae and its genera (Lachnospiraceae_NK4A136_group, Lachnospiraceae_AC2044_group, g_unclassified_f_ Lachnospiraceae) were representative microorganisms in the three seasons of spring, summer and winter with harsh environmental conditions; while in autumn with better environmental conditions, the Ruminococcaceae and its genus (Ruminococcaceae_UCG-009 and Ruminococcaceae_UCG-005) were the representative microorganism. In autumn, the ABC transporter and the pyruvate metabolic pathway were significantly higher than other seasons. Correlation analysis results showed that Lachnospiraceae participated in the ABC transporters metabolic pathway, which caused changes in the blood physiological indicators. Overall, our results showed that, in response to seasonal changes, Chinese merino fine-wool sheep under house-feeding have adjusted their own gut microbial community structure, causing changes in the metabolism, and thus changing the physiological conditions of the blood. In the cold season, producers should focus on regulating the nutritional level of feed, enhancing the level of butyric acid in young animals to increase the ABC transporter, resist the external harsh environment, and improve the survival rate.

10.
Front Plant Sci ; 12: 751901, 2021.
Article in English | MEDLINE | ID: mdl-34868138

ABSTRACT

Bermudagrass (Cynodon dactylon Pers.) is a wild Poaceae turfgrass with various genotypes and phenotypes. In this study, 16 wild bermudagrass germplasms were collected from 16 different sites along latitudinal gradients, and different temperature treatments were compiled and used for physiological and transcriptome analysis. To explore the correlation between the key differentially expressed genes and physiological indicators, a total of 14,654 DEGs were integrated from the comparison of different temperature treatments and used for weighted gene co-expression network analysis. Through comparative transcriptome analysis and gene annotation, the results showed that differential gene expression profiles in networks are associated with the plant growth, photosystem, redox system, and transcriptional regulation to cold stress in bermudagrass. In particular, genes encoding HSP70/90 and HsfA3/A8 are not only regulated by temperature stress, but also directly or indirectly interplay with the processes of peroxide scavenging and chlorophyll synthesis under cold stress. Besides, through a weight evaluation analysis of various physiological indexes, we identified an accession of wild bermudagrass with relatively strong cold resistance. These results provide important clues and resources to further study the responses to low-temperature stress in bermudagrass.

11.
Plants (Basel) ; 9(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333783

ABSTRACT

Cynodon dactylon (L.) Pers. (common Bermuda grass) has a limited capacity to grow at low temperatures, which limits its geographical range. Exploring its evolutionary relationship across different environmental gradients is necessary to understand the effects of temperature change on the genetics of common Bermuda grass. In this study, high-throughput transcriptome sequencing was performed on 137 samples of C. dactylon from 16 latitudinal gradients to explore the differential molecular markers and analyze genetic diversity and structure along latitudinal gradients at different temperatures. We primarily sampled more high-quality single nucleotide polymorphisms (SNPs) from populations at lower and middle latitudes. Greater intraspecific genetic variation at each level of temperature treatment could be due to factors such as wind pollination and asexual breeding. Populations of C. dactylon at high latitudes differed from populations at middle and low latitudes, which was supported by a principal component analysis (PCA) and genetic structure analysis, performed at different temperatures. We observed more genetic variation for low-latitude populations at 5 °C, according to an analysis of three phylogenetic trees at different temperature levels, suggesting that low temperatures affected samples with low cold resistance. Based on the results of phylogenetic analysis, we found that samples from high latitudes evolved earlier than most samples at low latitudes. The results provide a comprehensive understanding of the evolutionary phenomenon of landscape genetics, laying the groundwork for future structural and comparative genomic studies of C. dactylon.

12.
BMC Vet Res ; 15(1): 235, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31286947

ABSTRACT

BACKGROUND: Enterococcus is an important component of normal flora in human and animals, but in recent years, the pathogenicity of Enterococcus has been confirmed in clinical medicine. More and more animal infections have been reported in veterinary clinics. For the last decades, outbreaks of encephalitis in lambs have become much more common in Northern Xinjiang, China. Consequent studies have confirmed that these affected lambs had been commonly infected with E. faecalis. More than 60 E. faecalis were isolated from the brain of infected lambs, A highly virulent strain entitled E. faecalis 2A (XJ05) were selected, sequenced and analyzed. RESULT: Using whole genome sequence and de novo assembly, 18 contigs with NGS and annotation were obtained. It is confirmed that the genome has a size of 2.9 Mb containing 2783 protein-coding genes, as well as 54 tRNA genes and 4 rRNA genes. Some key features of this strain were identified, which included 7 predicted antibiotic resistance genes and 18 candidate virulence factor genes. CONCLUSION: The E. faecalis 2A (XJ05) genome is conspicuous smaller than E.faecalis V583, but not significantly different from other non-pathogenic E. faecalis. It carried 7 resistance genes including 4 kind of antibiotics which were consistent with the results of extensive drug resistance phenotypic, including aminoglycoside, macrolide, phenicol, and tetracycline. 2A (XJ05) also carried 18 new virulence factor genes related to virulence, hemolysin genes (cylA, cylB, cylM, cylL) may play an important role in lamb encephalitis by E. faecalis 2A (XJ05).


Subject(s)
Drug Resistance, Bacterial/genetics , Encephalitis/veterinary , Enterococcus faecalis/genetics , Enterococcus faecalis/pathogenicity , Genome, Bacterial/genetics , Sheep Diseases/microbiology , Virulence/genetics , Animals , Drug Resistance, Multiple/genetics , Encephalitis/microbiology , Sheep
13.
Int J Mol Sci ; 19(9)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154394

ABSTRACT

Altay is a typical fat-tailed sheep breed displaying the unique ability to rapidly mobilize fat, which is vital for maintaining a normal metabolism that facilitates its survival in lengthy winter conditions. However, the physiological, biochemical, and molecular mechanisms underlying fat mobilization remain to be elucidated. In this study, the monitoring of rump fat adipocyte sizes disclosed a positive correlation between cell size and fat deposition ability. In addition, we subjected sheep to persistent starvation to imitate the conditions that trigger rump fat mobilization and screened 112 differentially expressed proteins using the isobaric peptide labeling approach. Notably, increased secretion of leptin and adiponectin activated the key fat mobilization signaling pathways under persistent starvation conditions. Furthermore, the upregulation of resistin (RETN), heat-shock protein 72 (HSP72), and complement factor D (CFD) promoted lipolysis, whereas the downregulation of cell death-inducing DFFA-like effector C (CIDEC) inhibited lipid droplet fusion, and the increase in HSP72 and apolipoprotein AI (Apo-AI) levels activated the body's stress mechanisms. The synergistic actions of the above hormones, genes, and signaling pathways form a molecular network that functions in improving the adaptability of Altay sheep to extreme environments. Our findings provide a reference for elucidating the complex molecular mechanisms underlying rump fat mobilization.


Subject(s)
Adipose Tissue/metabolism , Adiposity , Lipid Metabolism , Proteome , Proteomics , Adipocytes/metabolism , Animals , Biomarkers , Gene Expression Regulation , Lipid Metabolism/genetics , Lipids/blood , Proteomics/methods , Sheep , Starvation
SELECTION OF CITATIONS
SEARCH DETAIL
...