Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 18(1): 233-245, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406206

ABSTRACT

The human brain's ultra-low power consumption and highly parallel computational capabilities can be accomplished by memristor-based convolutional neural networks. However, with the rapid development of memristor-based convolutional neural networks in various fields, more complex applications and heavier computations lead to the need for a large number of memristors, which makes power consumption increase significantly and the network model larger. To mitigate this problem, this paper proposes an SBT-memristor-based convolutional neural network architecture and a hybrid optimization method combining pruning and quantization. Firstly, SBT-memristor-based convolutional neural network is constructed by using the good thresholding property of the SBT memristor. The memristive in-memory computing unit, activation unit and max-pooling unit are designed. Then, the hybrid optimization method combining pruning and quantization is used to improve the SBT-memristor-based convolutional neural network architecture. This hybrid method can simplify the memristor-based neural network and represent the weights at the memristive synapses better. Finally, the results show that the SBT-memristor-based convolutional neural network reduces a large number of memristors, decreases the power consumption and compresses the network model at the expense of a little precision loss. The SBT-memristor-based convolutional neural network obtains faster recognition speed and lower power consumption in MNIST recognition. It provides new insights for the complex application of convolutional neural networks.

2.
Micromachines (Basel) ; 14(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36838110

ABSTRACT

The fourth basic circuit component, the memristor, has been proposed for a long time, but it is not mentioned in the experiment teaching system of Electrical and Electronic Technology. In this paper, an RC bridge oscillation chaotic circuit based on memristor is designed to solve this problem. The dynamical behavior of the circuit system is analyzed using Lyapunov exponents spectrum, bifurcation diagram, phase portrait and Poincaré map. A series of complex dynamical behaviors such as symmetric single-scroll coexistence, asymmetrical single-scroll coexistence, symmetric double-scroll coexistence and asymmetrical limit-cycle coexistence exist in the circuit system. This research plays a critical role in enriching students' knowledge and improving the experiment teaching system of Electrical and Electronic Technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...