Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 14: 1378694, 2024.
Article in English | MEDLINE | ID: mdl-38571496

ABSTRACT

PRKCSH, also known as Glucosidase II beta subunit (GluIIß), is a crucial component of the endoplasmic reticulum (ER) quality control system for N-linked glycosylation, essential for identifying and eliminating misfolded proteins. Glucosidase II consists of the catalytic alpha subunit (GluIIα) and the regulatory beta subunit (GluIIß), ensuring proper protein folding and release from the ER. The induction of PRKCSH in cancer and its interaction with various cellular components suggest broader roles beyond its previously known functions. Mutations in the PRKCSH gene are linked to autosomal dominant polycystic liver disease (ADPLD). Alternative splicing generates distinct PRKCSH isoforms, which can influence processes like epithelial-mesenchymal transition (EMT) and the proliferation of lung cancer cells. PRKCSH's involvement in cancer is multifaceted, impacting cell growth, metastasis, and response to growth factors. Additionally, PRKCSH orchestrates cell death programs, affecting both autophagy and apoptosis. Its role in facilitating N-linked glycoprotein release from the ER is hypothesized to assist cancer cells in managing increased demand and ER stress. Moreover, PRKCSH modulates anti-tumor immunity, with its suppression augmenting NK cell and T cell activity, promising enhanced cancer therapy. PRKCSH's diverse functions, including regulation of IGF1R and IRE1α, implicate it as a therapeutic target and biomarker in cancer immunotherapy. However, targeting its glucosidase II activity alone may not fully counteract its effects, suggesting broader mechanisms in cancer development. Further investigations are needed to elucidate PRKCSH's precise role and validate its therapeutic potential in cancer treatment.

2.
BMC Genomics ; 25(1): 82, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245670

ABSTRACT

Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIß knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells.Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.


Subject(s)
Cell Adhesion Molecules , Leukocytes, Mononuclear , alpha-Glucosidases , Humans , A549 Cells , Cell Adhesion Molecules/genetics , Gene Expression Profiling , Cytokines , Cell Adhesion , Cell Adhesion Molecule-1
3.
Asian Pac J Cancer Prev ; 24(10): 3585-3598, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37898867

ABSTRACT

OBJECTIVE: This study aimed to assess the practicality and reliability of utilizing microRNAs (miRNAs) as a potential screening and diagnosing tool for non-small cell lung cancers (NSCLCs) in Northern Thailand. METHODS: Small RNA sequencing and a literature review was performed to obtain a list of serum miRNA candidates. Serum levels of these selected miRNA candidates were measured in patients with NSCLC and healthy volunteers by real-time RT-PCR and receiver operating characteristic curve (ROC) were used to assess diagnostic performance. RESULTS: Sequencing data revealed 148 known miRNAs and 230 novel putative miRNAs in serum samples; 19 serum miRNAs were significantly downregulated and 242 were upregulated. Seven miRNAs selected according to sequencing data and 11 miRNAs according to previous reports were evaluated in training cohort (45 lung cancer patients, 26 controls) and 6 miRNAs were found differentially expressed (p < 0.05, Mann Whitney U test) and associated (p < 0.05, Chi-square test) with NSCLC development. Further analysis and verification identified an optimal combination of 4 miRNAs composed of hsa-miR23a, hsa-miR26b, hsa-miR4488 and novel-130 to provide the optimal AUC of 0.901±0.034. Detection of serum miRNA by real-time RT-PCR showed good reproducibility with the coefficient of variation (CV) ≤ 4%. The optimal screening miRNAs panel was primarily identified through sequencing data of local patient population, thus indicating that the etiology of NSCLCs may differ from one population to other and thus require a unique panel of miRNAs for their identification. CONCLUSION: Circulating miRNA is a feasible screening tool for NSCLCs. Nevertheless, populations with different lung cancer etiology may need to identify their own most suitable miRNA panel.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Reproducibility of Results , Thailand , Biomarkers , High-Throughput Nucleotide Sequencing , Biomarkers, Tumor/genetics , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...