Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Mater Au ; 3(5): 483-491, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-38089100

ABSTRACT

Ovarian cancer, which is one of the most diagnosed cancer types among women, maintains its significance as a global health problem. Several drug candidates have been investigated for the potential treatment of ovarian cancer. Nonsteroidal anti-inflammatory drugs (NSAIDs) demonstrated anti-cancer activity through the inhibition of cyclooxygenase 2 (COX-2) and by inhibiting COX-2-dependent prostaglandin (PG) production. Naproxen is one of the most used NSAIDs and Naproxen-derived compounds (NDCs) may show potential treatment effects on cancer as chemotherapeutic drugs. Although there are successful drug development studies, the lack of solubility of these drug candidates in aqueous media results in limited bioavailability and high variability of patient responses during treatment. Low aqueous solubility is one of the main problems in the pharmaceutical industry in terms of drug development. Nanotechnology-based strategies provide solutions to hydrophobic drug limitations by increasing dispersion and improving internalization. In this study, two different NDCs (NDC-1 and NDC-2) bearing a thiosemicarbazide/1,2,4-triazole moiety were synthesized and tested for chemotherapeutic effects on ovarian cancer cells, which have a high COX-2 expression. To overcome the limited dispersion of these hydrophobic drugs, the drug molecules were conjugated to the surface of 13 nm AuNPs. Conjugation of drugs to AuNPs increased the distribution of drugs in aqueous media, and NDC@AuNP conjugates exhibited excellent colloidal stability for up to 8 weeks. The proposed system demonstrated an increased chemotherapeutic effect than the free drug counterparts with at least 5 times lower IC50 values. NDC@AuNP nanosystems induced higher apoptosis rates, which established a simple and novel way to investigate activity of prospective drugs in drug discovery research.

2.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36297413

ABSTRACT

Isoniazid (INH) is one of the key molecules employed in the treatment of tuberculosis (TB), the most deadly infectious disease worldwide. However, the efficacy of this cornerstone drug has seriously decreased due to emerging INH-resistant strains of Mycobacterium tuberculosis (Mtb). In the present study, we aimed to chemically tailor INH to overcome this resistance. We obtained thirteen novel compounds by linking INH to in-house synthesized sulfonate esters via a hydrazone bridge (SIH1-SIH13). Following structural characterization by FTIR, 1H NMR, 13C NMR, and HRMS, all compounds were screened for their antitubercular activity against Mtb H37Rv strain and INH-resistant clinical isolates carrying katG and inhA mutations. Additionally, the cytotoxic effects of SIH1-SIH13 were assessed on three different healthy host cell lines; HEK293, IMR-90, and BEAS-2B. Based on the obtained data, the synthesized compounds appeared as attractive antimycobacterial drug candidates with low cytotoxicity. Moreover, the stability of the hydrazone moiety in the chemical structure of the final compounds was confirmed by using UV/Vis spectroscopy in both aqueous medium and DMSO. Subsequently, the compounds were tested for their inhibitory activities against enoyl acyl carrier protein reductase (InhA), the primary target enzyme of INH. Although most of the synthesized compounds are hosted by the InhA binding pocket, SIH1-SIH13 do not primarily show their antitubercular activities by direct InhA inhibition. Finally, in silico determination of important physicochemical parameters of the molecules showed that SIH1-SIH13 adhered to Lipinski's rule of five. Overall, our study revealed a new strategy for modifying INH to cope with the emerging drug-resistant strains of Mtb.

SELECTION OF CITATIONS
SEARCH DETAIL
...