Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(7): e0181258, 2017.
Article in English | MEDLINE | ID: mdl-28753622

ABSTRACT

The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.


Subject(s)
Hemiptera/physiology , Hemiptera/virology , Herbivory/physiology , Oryza/physiology , Plant Viruses/physiology , Plants, Genetically Modified/virology , Animals
2.
Environ Entomol ; 45(2): 518-25, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26721297

ABSTRACT

The ecological risks to nontarget organisms should be rigorously assessed before Bt crops are released. Here, the impacts of a new Cry1Ab/Vip3H rice line on arthropod communities in rice agroecosystems were evaluated across 3 yr. Arthropods collected via vacuum were sorted into five guilds. The abundance and proportion of each guild as well as community-level parameters were determined in Cry1Ab/Vip3H and control rice fields. Changes in arthropod species assemblage over sampling dates were investigated by principal response curves (PRCs). Cry1Ab/Vip3H rice did not exert significant impacts on the seasonal density and proportion of each guild, except parasitoids. Detritivore seasonal density, but not its relative abundance, was significantly affected by Cry1Ab/Vip3H rice. Four community indices (species richness S, Shannon-Wiener index H', Simpson index D, and evenness index J') were similar between rice types. PRCs revealed a slight community difference between rice types in the past two tested years, with rice types accounting for 1.0-3.5% of the variance among arthropod communities. However, sampling dates explain 32.1-67.6% for these community differences. Of the 46 taxa with higher species weights, 26.1% of the taxa were significantly different, including seven taxa with higher abundance and five with lower density in Cry1Ab/Vip3H rice fields. These differences may be attributed to change in abundance of prey or hosts but not to direct effects of Bt proteins. We infer that this new Cry1Ab/Vip3H rice line poses no unintended ecological risks to the arthropod community.


Subject(s)
Arthropods/drug effects , Bacterial Proteins/adverse effects , Biodiversity , Endotoxins/adverse effects , Hemolysin Proteins/adverse effects , Insecticides/adverse effects , Oryza/physiology , Pest Control, Biological , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/genetics , Bacterial Proteins/pharmacology , China , Endotoxins/genetics , Endotoxins/pharmacology , Hemolysin Proteins/genetics , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Oryza/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
3.
Front Plant Sci ; 6: 1181, 2015.
Article in English | MEDLINE | ID: mdl-26734057

ABSTRACT

Bt proteins are the most widely used insecticidal proteins in transgenic crops for improving insect resistance. We previously observed longer nymphal developmental duration and lower fecundity in brown planthopper (BPH) fed on Bt rice line KMD2, although Bt insecticidal protein Cry1Ab could rarely concentrate in this non-target rice pest. In the present study, we performed microarray analysis in an effort to detect Bt-independent variation, which might render Bt rice more defensive and/or less nutritious to BPH. We detected 3834 and 3273 differentially expressed probe-sets in response to BPH infestation in non-Bt parent Xiushui 11 and Bt rice KMD2, respectively, only 439 of which showed significant differences in expression between rice lines. Our analysis revealed a shift from growth to defense responses in response to BPH infestation, which was also detected in many other studies of plants suffering biotic and abiotic stresses. Chlorophyll biosynthesis and basic metabolism pathways were inhibited in response to infestation. IAA and GA levels decreased as a result of the repression of biosynthesis-related genes or the induction of inactivation-related genes. In accordance with these observations, a number of IAA-, GA-, BR-signaling genes were downregulated in response to BPH. Thus, the growth of rice plants under BPH attack was reduced and defense related hormone signaling like JA, SA and ET were activated. In addition, growth-related hormone signaling pathways, such as GA, BR, and auxin signaling pathways, as well as ABA, were also found to be involved in BPH-induced defense. On the other side, 51 probe-sets (represented 50 genes) that most likely contribute to the impact of Bt rice on BPH were identified, including three early nodulin genes, four lipid metabolic genes, 14 stress response genes, three TF genes and genes with other functions. Two transcription factor genes, bHLH and MYB, together with lipid transfer protein genes LTPL65 and early nodulin gene ENOD93, are the most likely candidates for improving herbivore resistance in plants.

4.
Pest Manag Sci ; 71(7): 937-45, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25067834

ABSTRACT

BACKGROUND: Transgenic rice producing the insecticidal protein from Bacillus thuringiensis Berliner (Bt) is protected from damage by lepidopteran insect pests. However, one of the main concerns about Bt rice is the potential impact on non-target herbivores. In the present study, the ecological impacts of two Bt rice lines, T1C-19 expressing Cry1C protein and T2A-1 expressing Cry2A protein, on the non-target herbivore brown planthopper (BPH), Nilaparvata lugens (Stål), were evaluated under laboratory and field conditions. The purpose was to verify whether these Bt rice lines could affect the performance of BPH at individual and population scales. RESULTS: Laboratory results showed that most of the fitness parameters (development duration, survival rate, fecundity, fertility, amount of honeydew excreted) of BPH were not significantly affected by the two tested Bt rice lines, although the development duration of fourth-instar nymphs fed on T1C-19 was distinctly longer compared with that on T2A-1 and non-Bt rice plants. Five life-table parameters did not significantly differ among rice types. Two-year field trials also revealed no significant difference in population dynamics of BPH among rice types. CONCLUSION: It is inferred that the tested Bt rice lines are unlikely to affect the population growth of BPH.


Subject(s)
Bacterial Proteins/genetics , Endotoxins/genetics , Hemiptera/physiology , Hemolysin Proteins/genetics , Oryza/metabolism , Animals , Bacillus thuringiensis , Bacillus thuringiensis Toxins , Female , Hemiptera/growth & development , Male , Nymph/growth & development , Nymph/physiology , Oryza/genetics , Plants, Genetically Modified , Population Dynamics , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...