Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Heart Circ Physiol ; 322(2): H269-H284, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34951544

ABSTRACT

The atrial myocardium demonstrates the highly heterogeneous organization of the transversal-axial tubule system (TATS), although its anatomical distribution and region-specific impact on Ca2+ dynamics remain unknown. Here, we developed a novel method for high-resolution confocal imaging of TATS in intact live mouse atrial myocardium and applied a custom-developed MATLAB-based computational algorithm for the automated analysis of TATS integrity. We observed a twofold higher (P < 0.01) TATS density in the right atrial appendage (RAA) than in the intercaval regions (ICR, the anatomical region between the superior vena cava and atrioventricular junction and between the crista terminalis and interatrial septum). Whereas RAA predominantly consisted of well-tubulated myocytes, ICR showed partially tubulated/untubulated cells. Similar TATS distribution was also observed in healthy human atrial myocardium sections. In both mouse atrial preparations and isolated mouse atrial myocytes, we observed a strong anatomical correlation between TATS distribution and Ca2+ transient synchronization and rise-up time. This region-specific difference in Ca2+ transient morphology disappeared after formamide-induced detubulation. ICR myocytes showed a prolonged action potential duration at 80% of repolarization as well as a significantly lower expression of RyR2 and Cav1.2 proteins but similar levels of NCX1 and Cav1.3 compared with RAA tissue. Our findings provide a detailed characterization of the region-specific distribution of TATS in mouse and human atrial myocardium, highlighting the structural foundation for anatomical heterogeneity of Ca2+ dynamics and contractility in the atria. These results could indicate different roles of TATS in Ca2+ signaling at distinct anatomical regions of the atria and provide mechanistic insight into pathological atrial remodeling.NEW & NOTEWORTHY Mouse and human atrial myocardium demonstrate high variability in the organization of the transversal-axial tubule system (TATS), with more organized TATS expressed in the right atrial appendage. TATS distribution governs anatomical heterogeneity of Ca2+ dynamics and thus could contribute to integral atrial contractility, mechanics, and arrhythmogenicity.


Subject(s)
Calcium Signaling , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Action Potentials , Animals , Calcium Channels, L-Type/metabolism , Cell Membrane/metabolism , Cell Membrane/physiology , Heart Atria/cytology , Humans , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Ryanodine Receptor Calcium Release Channel/metabolism , Sodium-Calcium Exchanger/metabolism
2.
Sleep ; 45(2)2022 02 14.
Article in English | MEDLINE | ID: mdl-34718812

ABSTRACT

STUDY OBJECTIVES: Sleep is an important biological process that is perturbed in numerous diseases, and assessment of its substages currently requires implantation of electrodes to carry out electroencephalogram/electromyogram (EEG/EMG) analysis. Although accurate, this method comes at a high cost of invasive surgery and experts trained to score EEG/EMG data. Here, we leverage modern computer vision methods to directly classify sleep substages from video data. This bypasses the need for surgery and expert scoring, provides a path to high-throughput studies of sleep in mice. METHODS: We collected synchronized high-resolution video and EEG/EMG data in 16 male C57BL/6J mice. We extracted features from the video that are time and frequency-based and used the human expert-scored EEG/EMG data to train a visual classifier. We investigated several classifiers and data augmentation methods. RESULTS: Our visual sleep classifier proved to be highly accurate in classifying wake, non-rapid eye movement sleep (NREM), and rapid eye movement sleep (REM) states, and achieves an overall accuracy of 0.92 ± 0.05 (mean ± SD). We discover and genetically validate video features that correlate with breathing rates, and show low and high variability in NREM and REM sleep, respectively. Finally, we apply our methods to noninvasively detect that sleep stage disturbances induced by amphetamine administration. CONCLUSIONS: We conclude that machine learning-based visual classification of sleep is a viable alternative to EEG/EMG based scoring. Our results will enable noninvasive high-throughput sleep studies and will greatly reduce the barrier to screening mutant mice for abnormalities in sleep.


Subject(s)
Sleep Stages , Wakefulness , Animals , Electroencephalography , Electromyography , Machine Learning , Male , Mice , Mice, Inbred C57BL , Sleep , Sleep, REM
SELECTION OF CITATIONS
SEARCH DETAIL
...