Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO J ; 42(12): e112869, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37092320

ABSTRACT

Translation initiates when the eIF4F complex binds the 5' mRNA cap, followed by 5' untranslated region scanning for the start codon by scanning ribosomes. Here, we demonstrate that the ASC-1 complex (ASCC), which was previously shown to promote the dissociation of colliding 80S ribosomes, associates with scanning ribosomes to regulate translation initiation. Selective translation complex profiling (TCP-seq) analysis revealed that ASCC3, a helicase domain-containing subunit of ASCC, localizes predominantly to the 5' untranslated region of mRNAs. Ribo-seq, TCP-seq, and luciferase reporter analyses showed that ASCC3 knockdown impairs 43S preinitiation complex loading and scanning dynamics, thereby reducing translation efficiency. Whereas eIF4A, an RNA helicase in the eIF4F complex, is important for global translation, ASCC was found to regulate the scanning process for a specific subset of transcripts. Our results have thus revealed that ASCC is required not only for dissociation of colliding 80S ribosomes but also for efficient translation initiation by scanning ribosomes at a subset of transcripts.


Subject(s)
Eukaryotic Initiation Factor-4F , Ribosomes , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4F/metabolism , 5' Untranslated Regions , Ribosomes/genetics , Ribosomes/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Codon, Initiator , Protein Biosynthesis , Peptide Chain Initiation, Translational
2.
EMBO J ; 41(5): e109256, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35040509

ABSTRACT

The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome-wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon-decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter-based analyses to define codon-mediated mRNA decay and ribosome stall-dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling-dependent mRNA decay. We propose that codon-mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.


Subject(s)
Codon/genetics , RNA Stability/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Amino Acid Sequence , Animals , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Quality Control , Zebrafish/genetics
3.
Cell Rep ; 31(5): 107610, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32375038

ABSTRACT

Ribosome movement is not always smooth and is rather often impeded. For ribosome pauses, fundamental issues remain to be addressed, including where ribosomes pause on mRNAs, what kind of RNA/amino acid sequence causes this pause, and the physiological significance of this attenuation of protein synthesis. Here, we survey the positions of ribosome collisions caused by ribosome pauses in humans and zebrafish using modified ribosome profiling. Collided ribosomes, i.e., disomes, emerge at various sites: Pro-Pro/Gly/Asp motifs; Arg-X-Lys motifs; stop codons; and 3' untranslated regions. The electrostatic interaction between the charged nascent chain and the ribosome exit tunnel determines the eIF5A-mediated disome rescue at the Pro-Pro sites. In particular, XBP1u, a precursor of endoplasmic reticulum (ER)-stress-responsive transcription factor, shows striking queues of collided ribosomes and thus acts as a degradation substrate by ribosome-associated quality control. Our results provide insight into the causes and consequences of ribosome pause by dissecting collided ribosomes.


Subject(s)
Codon, Terminator/genetics , Protein Biosynthesis/genetics , Ribosomes/genetics , Ribosomes/metabolism , 3' Untranslated Regions/genetics , Animals , Codon, Terminator/metabolism , Humans , Peptide Chain Elongation, Translational/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...