Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 6(4): 307-315, 2014.
Article in English | MEDLINE | ID: mdl-30464941

ABSTRACT

CoFe2O4-graphene nanocomposites (CoFe2O4-GNSs) have been synthesized through an ultrasonic method combined with calcination process. The nanocomposite calcinated at 350 °C shows better rate capabilities, e.g., 696, 495, 308, and 254 mAh g-1 at 1, 2, 5, and 10 A g-1, respectively.

2.
Phys Chem Chem Phys ; 15(11): 3939-45, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23403797

ABSTRACT

MnFe(2)O(4)-graphene nanocomposites (MnFe(2)O(4)-GNSs) with enhanced electrochemical performances have been successfully prepared through an ultrasonic method, e.g., approximate 1017 mA h g(-1) and 767 mA h g(-1) reversible capacities are retained even after 90 cycles at a current density of 0.1 A g(-1) and 1 A g(-1), respectively. The remarkable improvement in the reversible capacity, cyclic stability and rate capability of the obtained MnFe(2)O(4)-GNSs nanocomposites can be attributed to the good electrical conductivity and special structure of the graphene nanosheets. On the other hand, MnFe(2)O(4) also plays an important role because it transforms into a nanosized hybrid of Fe(3)O(4)-MnO with a particle size of about 20 nm during discharge-charge process, and the in situ formed hybrid of Fe(3)O(4)-MnO can be combined with GNSs to form a spongy porous structure. Furthermore, the formed hybrid can also act as the matrix of MnO or Fe(3)O(4) to prevent the aggregation of Fe(3)O(4) or MnO, and accommodate the volume change of the active materials during the discharge-charge processes, which is also beneficial to improve the electrochemical performances of the MnFe(2)O(4)-GNSs nanocomposites.

SELECTION OF CITATIONS
SEARCH DETAIL
...