Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiome ; 11(1): 18, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36721246

ABSTRACT

BACKGROUND: Narrow host range is a major limitation for phage applications, but phages can evolve expanded host range through adaptations in the receptor-binding proteins. RESULTS: Here, we report that Pseudomonas phage K8 can evolve broader host range and higher killing efficiency at the cost of virion stability. Phage K8 host range mutant K8-T239A carries a mutant version of the putative baseplate wedge protein GP075, termed GP075m. While phage K8 adsorbs to hosts via the O-specific antigen of bacterial LPS, phage K8-T239A uses GP075m to also bind the bacterial core oligosaccharide, enabling infection of bacterial strains resistant to K8 infection due to modified O-specific antigens. This mutation in GP075 also alters inter-protein interactions among phage proteins, and reduces the stability of phage particles to environmental stressors like heat, acidity, and alkalinity. We find that a variety of mutations in gp075 are widespread in K8 populations, and that the gp075-like genes are widely distributed among the domains of life. CONCLUSION: Our data show that a typical life history tradeoff occurs between the stability and the host range in the evolution of phage K8. Reservoirs of viral gene variants may be widely present in phage communities, allowing phages to rapidly adapt to any emerging environmental stressors. Video Abstract.


Subject(s)
Bacteriophages , Pseudomonas Phages , Host Specificity , Bacteriophages/genetics , Acclimatization , Genes, Viral , Pseudomonas Phages/genetics
2.
Food Res Int ; 162(Pt B): 112197, 2022 12.
Article in English | MEDLINE | ID: mdl-36461376

ABSTRACT

Many Pseudomonas phages recognize lipopolysaccharides (LPS) as the receptor for infection. LPS defective mutants are often recovered from phage treatments, possibly causing the failure of phage applications. In this work, we isolated a lytic Pseudomonas phage, phiZ98, that can specifically lyse LPS defective strains of the genus Pseudomonas. Transmission electron microscopy (TEM) showed that phiZ98 particles were enveloped in a layer of membrane-like structure. Genomic analysis revealed that the phage has a genome of tri-segmented double-stranded RNA molecules of 6627 bp, 3769 bp, and 3075 bp, respectively. The results indicated that phage phiZ98 was the nineth member of the genus Cystovirus. The phiZ98 genome encoded 12 putative proteins with predicted functions and 15 hypothetical proteins. Mass spectrum analysis further identified 11 proteins present in the virions. Antibacterial activity assays showed that phage phiZ98 significantly inhibited cell growth, reduced biofilm formation, and removed mature biofilm. Moreover, phage phiZ98 can significantly control the growth of the host bacterial cells in sterilized milk or canned corned beef. In combination with phage K8 which used LPS as the receptor, phiZ98 can significantly reduce the phage-resistant mutants generated from the K8 treatment in milk. Taken together, the dsRNA phage phiZ98 could be an effective scavenger in removing phage-resistant mutants with defective LPS in cocktail applications.


Subject(s)
Bacteriophages , Cystoviridae , Cattle , Animals , Lipopolysaccharides , Bacteriophages/genetics , Pseudomonas/genetics , RNA, Double-Stranded/genetics , Meat
SELECTION OF CITATIONS
SEARCH DETAIL
...