Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 831
Filter
1.
Biomed Pharmacother ; 176: 116806, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796971

ABSTRACT

Central nervous system (CNS) damage is usually irreversible owing to the limited regenerative capability of neurons. Following CNS injury, astrocytes are reactively activated and are the key cells involved in post-injury repair mechanisms. Consequently, research on the reprogramming of reactive astrocytes into neurons could provide new directions for the restoration of neural function after CNS injury and in the promotion of recovery in various neurodegenerative diseases. This review aims to provide an overview of the means through which reactive astrocytes around lesions can be reprogrammed into neurons, to elucidate the intrinsic connection between the two cell types from a neurogenesis perspective, and to summarize what is known about the neurotranscription factors, small-molecule compounds and MicroRNA that play major roles in astrocyte reprogramming. As the malignant proliferation of astrocytes promotes the development of glioblastoma multiforme (GBM), this review also examines the research advances on and the theoretical basis for the reprogramming of GBM cells into neurons and discusses the advantages of such approaches over traditional treatment modalities. This comprehensive review provides new insights into the field of GBM therapy and theoretical insights into the mechanisms of neurological recovery following neurological injury and in GBM treatment.

2.
Anal Chim Acta ; 1309: 342685, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772667

ABSTRACT

The monitoring of heavy metal ions in ocean is crucial for environment protection and assessment of seawater quality. However, the detection of heavy metal ions in seawater with electrochemical sensors, especially for long-term monitoring, always faces challenges due to marine biofouling caused by the nonspecific adsorption of microbial and biomolecules. Herein, an electrochemical aptasensor, integrating both antifouling and antibacterial properties, was developed for the detection of Hg2+ in the ocean. In this electrochemical aptasensor, eco-friendly peptides with superior hydrophilicity served as anti-biofouling materials, preventing nonspecific adsorption on the sensing interface, while silver nanoparticles were employed to eliminate bacteria. Subsequently, a ferrocene-modified aptamer was employed for the specific recognition of Hg2+, leveraging the aptamer's ability to fold into a thymine-Hg2+-thymine (T-Hg2+-T) structure upon interaction, and bringing ferrocene nearer to the sensor surface, significantly amplifying the electrochemical response. The prepared electrochemical aptasensor significantly reduced the nonspecific adsorption in seawater while maintaining sensitive electrochemical response. Furthermore, the biosensor exhibited a linear response range of 0.01-100 nM with a detection limit of 2.30 pM, and realized the accurate monitoring of mercury ions in real marine environment. The research results offer new insights into the preparation of marine antifouling sensing devices, and it is expected that sensors with antifouling and antimicrobial capabilities will find broad applications in the monitoring of marine pollutants.


Subject(s)
Anti-Bacterial Agents , Biofouling , Biosensing Techniques , Electrochemical Techniques , Mercury , Seawater , Mercury/analysis , Seawater/chemistry , Seawater/microbiology , Electrochemical Techniques/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/pharmacology , Biosensing Techniques/methods , Biofouling/prevention & control , Aptamers, Nucleotide/chemistry , Silver/chemistry , Water Pollutants, Chemical/analysis , Metal Nanoparticles/chemistry , Limit of Detection , Ferrous Compounds/chemistry , Metallocenes
3.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(6): 720-724, 2024 Jun 10.
Article in Chinese | MEDLINE | ID: mdl-38818557

ABSTRACT

OBJECTIVE: To explore the clinical and genetic characteristics of three children with Hyperekplexia. METHODS: Three children who were diagnosed with Hyperekplexia at the Third Affiliated Hospital of Zhengzhou University between June 2018 and March 2020 were selected as the study subjects. Clinical data of the three children were collected. All children were subjected to whole exome sequencing. Pathogenicity of candidate variants were verified by Sanger sequencing and bioinformatic analysis. RESULTS: The three children were all males, and had presented exaggerated startle reflexes and generalized stiffness in response to unexpected auditory or tactile stimulation, or had frequent traumatic falls following exaggerated startle. All children had shown positive nose-tapping reflex, though EEG and cranial MRI exams were all negative. Whole exome sequencing revealed that two children had harbored homozygous variants of the GLRB gene, of which the c.1017_c.1018insAG (p.G340Rfs*14) was unreported previously. The third child had harbored compound heterozygous variants of the GLRA1 gene, among which the c.1262T>A (p.IIe421Asn) variant showed an unreported autosomal recessive inheritance. All children had responded well to clonazepam treatment. CONCLUSION: Patients with Hyperekplexia have typical clinical manifestations. Early clinical identification and genetic analysis can facilitate their diagnosis.


Subject(s)
Exome Sequencing , Hyperekplexia , Receptors, Glycine , Humans , Male , Receptors, Glycine/genetics , Child , Hyperekplexia/genetics , Hyperekplexia/physiopathology , Mutation , Child, Preschool , Receptors, GABA-A/genetics , Genetic Testing , Homozygote
4.
J Microbiol Biotechnol ; 34(6): 1-10, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38755002

ABSTRACT

This study aimed to develop and assess a chitosan biomedical antibacterial gel ZincOxideGrapheneOxide/Chitosan/ß-Glycerophosphate (ZnO-GO/CS/ß-GP) loaded with nano-zinc oxide (ZnO) and graphene oxide (GO), known for its potent antibacterial properties, biocompatibility, and sustained drug release. ZnO nanoparticles (ZnO-NPs) were modified and integrated with GO sheets to create 1% and 3% ZnO-GO/CS/ß-GP thermo-sensitive hydrogels based on ZnO-GO to Chitosan (CS) mass ratio. Gelation time, pH, structural changes, and microscopic morphology were evaluated. The hydrogel's antibacterial efficacy against Porphyromonas gingivalis, biofilm biomass, and metabolic activity was examined alongside its impact (MC3T3-e1). The findings of this study revealed that both hydrogel formulations exhibited temperature sensitivity, maintaining a neutral pH. The ZnO-GO/CS/ß-GP formulation effectively inhibited P. gingivalis bacterial activity and biofilm formation, with a 3% ZnO-GO/CS/ß-GP antibacterial rate approaching 100%. MC3T3-e1 cells displayed good biocompatibility when cultured in the hydrogel extract.The ZnO-GO/CS/ß-GP thermo-sensitive hydrogel demonstrates favorable physical and chemical properties, effectively preventing P. gingivalis biofilm formation. It exhibits promising biocompatibility, suggesting its potential as an adjuvant therapy for managing and preventing peri-implantitis, subject to further clinical investigations.

5.
ACS Sens ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776243

ABSTRACT

Overcoming the influence of interfering substances in the environment and achieving superior sensing performance are significant challenges in biomarker detection within complex matrices. Herein, an integrated electrochemical sensing platform for sensitive detection of biomarkers in complex biofluids was developed based on a newly designed PEGylated multifunctional peptide (PEG-MPEP). The designed PEG-MPEP contains a poly(serine) sequence (-ssssss-) as the antifouling part and recognition peptide sequence (-avwgrwh) specific for the target human immunoglobulin G (IgG). To improve the peptide stability to protease hydrolysis, d-amino acids were adopted to synthesize the whole peptide. Additionally, the PEGylation can further enhance the stability of the peptide, and the PEG itself was also antifouling, ensuring superstrong antifouling capability of the PEG-MPEP. The designed PEG-MPEP-based biosensor possessed a high sensitivity for the detection of IgG in the range of 1.0 pg mL-1 to 1.0 µg mL-1, with a low limit of detection (0.41 pg mL-1), and it was capable of assaying targets accurately in real serum samples. Compared with conventional peptide-modified biosensors, the PEG-MPEP-modified biosensor exhibited superior antifouling and antihydrolysis properties in complex biofluid, showcasing promising potential for practical assay applications.

6.
Biosensors (Basel) ; 14(5)2024 May 13.
Article in English | MEDLINE | ID: mdl-38785719

ABSTRACT

Since SARS-CoV-2 is a highly transmissible virus, alternative reliable, fast, and cost-effective methods are still needed to prevent virus spread that can be applied in the laboratory and for point-of-care testing. Reverse transcription real-time fluorescence quantitative PCR (RT-qPCR) is currently the gold criteria for detecting RNA viruses, which requires reverse transcriptase to reverse transcribe viral RNA into cDNA, and fluorescence quantitative PCR detection was subsequently performed. The frequently used reverse transcriptase is thermolabile; the detection process is composed of two steps: the reverse transcription reaction at a relatively low temperature, and the qPCR performed at a relatively high temperature, moreover, the RNA to be detected needs to pretreated if they had advanced structure. Here, we develop a fast and sensitive one-tube SARS-CoV-2 detection platform based on Ultra-fast RTX-PCR and Pyrococcus furiosus Argonaute-mediated Nucleic acid Detection (PAND) technology (URPAND). URPAND was achieved ultra-fast RTX-PCR process based on a thermostable RTX (exo-) with both reverse transcriptase and DNA polymerase activity. The URPAND can be completed RT-PCR and PAND to detect nucleic acid in one tube within 30 min. This method can specifically detect SARS-CoV-2 with a low detection limit of 100 copies/mL. The diagnostic results of clinical samples with one-tube URPAND displayed 100% consistence with RT-qPCR test. Moreover, URPAND was also applied to identify SARS-CoV-2 D614G mutant due to its single-nucleotide specificity. The URPAND platform is rapid, accurate, tube closed, one-tube, easy-to-operate and free of large instruments, which provides a new strategy to the detection of SARS-CoV-2 and other RNA viruses.


Subject(s)
Argonaute Proteins , COVID-19 , Pyrococcus furiosus , RNA, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , RNA, Viral/analysis , COVID-19/diagnosis , COVID-19/virology , Humans , Real-Time Polymerase Chain Reaction/methods , Biosensing Techniques/methods , COVID-19 Nucleic Acid Testing/methods
7.
Ageing Res Rev ; 98: 102324, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762100

ABSTRACT

Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.

8.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786667

ABSTRACT

The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.

9.
J Diabetes ; 16(4): e13549, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584275

ABSTRACT

AIMS: Management of blood glucose fluctuation is essential for diabetes. Exercise is a key therapeutic strategy for diabetes patients, although little is known about determinants of glycemic response to exercise training. We aimed to investigate the effect of combined aerobic and resistance exercise training on blood glucose fluctuation in type 2 diabetes patients and explore the predictors of exercise-induced glycemic response. MATERIALS AND METHODS: Fifty sedentary diabetes patients were randomly assigned to control or exercise group. Participants in the control group maintained sedentary lifestyle for 2 weeks, and those in the exercise group specifically performed combined exercise training for 1 week. All participants received dietary guidance based on a recommended diet chart. Glycemic fluctuation was measured by flash continuous glucose monitoring. Baseline fat and muscle distribution were accurately quantified through magnetic resonance imaging (MRI). RESULTS: Combined exercise training decreased SD of sensor glucose (SDSG, exercise-pre vs exercise-post, mean 1.35 vs 1.10 mmol/L, p = .006) and coefficient of variation (CV, mean 20.25 vs 17.20%, p = .027). No significant change was observed in the control group. Stepwise multiple linear regression showed that baseline MRI-quantified fat and muscle distribution, including visceral fat area (ß = -0.761, p = .001) and mid-thigh muscle area (ß = 0.450, p = .027), were significantly independent predictors of SDSG change in the exercise group, as well as CV change. CONCLUSIONS: Combined exercise training improved blood glucose fluctuation in diabetes patients. Baseline fat and muscle distribution were significant factors that influence glycemic response to exercise, providing new insights into personalized exercise intervention for diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/therapy , Blood Glucose , Blood Glucose Self-Monitoring , Exercise/physiology , Muscle, Skeletal
10.
Sci Rep ; 14(1): 9705, 2024 04 27.
Article in English | MEDLINE | ID: mdl-38678158

ABSTRACT

The primary triggers that stimulate the body to generate platelet antibodies via immune mechanisms encompass events such as pregnancy, transplantation, and blood transfusion. Interestingly, our findings revealed that a subset of male patients with hepatocellular carcinoma (HCC), despite having no history of transplantation or blood transfusion, has shown positive results in platelet antibody screenings. This hints at the possibility that certain factors, potentially related to the tumor itself or its treatment, may affect antibody production. To delve the causes we initiated this study. We employed a case-control study approach to analyze potential influential factors leading to the positive results via univariate and multivariate regression analysis. We utilized Kendall's tau-b correlation to examine the relationship between the strength of platelet antibodies and peripheral blood cytopenia. Antitumor medication emerged as an independent risk factor for positive results in HCC patients, and the strength of platelet antibodies positively correlated with the severity of anemia and thrombocytopenia. Without history of blood transfusion, transplantation, pregnancy, those HCC patients underwent recent tumor medication therapy are experiencing peripheral erythrocytopenia or thrombocytopenia, for them platelet antibody screenings holds potential clinical value for prevention and treatment of complications like drug-immune-related anemia and/or bleeding.


Subject(s)
Blood Platelets , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/blood , Liver Neoplasms/immunology , Male , Female , Middle Aged , Blood Platelets/immunology , Case-Control Studies , Thrombocytopenia/blood , Thrombocytopenia/immunology , Thrombocytopenia/etiology , Aged , Adult , Autoantibodies/blood , Autoantibodies/immunology , Anemia/blood , Anemia/immunology , Risk Factors , Cytopenia
11.
Biochem Biophys Res Commun ; 710: 149871, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38579538

ABSTRACT

Brassinosteroid activated kinase 1 (BAK1) is a cell-surface coreceptor which plays multiple roles in innate immunity of plants. HopF2 is an effector secreted by the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 into Arabidopsis and suppresses host immune system through interaction with BAK1 as well as its downstream kinase MKK5. The association mechanism of HopF2 to BAK1 remains unclear, which prohibits our understanding and subsequent interfering of their interaction for pathogen management. Herein, we found the kinase domain of BAK1 (BAK1-KD) is sufficient for HopF2 association. With a combination of hydrogen/deuterium exchange mass spectrometry and mutational assays, we found a region of BAK1-KD N-lobe and a region of HopF2 head subdomain are critical for intermolecular interaction, which is also supported by unbiased protein-protein docking with ClusPro and kinase activity assay. Collectively, this research presents the interaction mechanism between Arabidopsis BAK1 and P. syringae HopF2, which could pave the way for bactericide development that blocking the functioning of HopF2 toward BAK1.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Pseudomonas syringae/physiology , Brassinosteroids , Bacterial Proteins/chemistry , Arabidopsis Proteins/physiology , Plant Diseases/microbiology , Protein Serine-Threonine Kinases/chemistry
12.
Int Wound J ; 21(4): e14864, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619084

ABSTRACT

Multidrug-resistant (MDR) bacterial infections have become increasingly common in recent years due to the increased prevalence of diabetic foot ulcers (DFUs). We carried out a meta-analysis aimed at investigating the prevalence of MDR bacteria isolated from DFUs and analysing the risk factors for MDR bacterial infection in patients with DFUs. The PubMed/Medline, Web of Science, Embase, Cochrane Library, Ovid, Scopus, and ProQuest databases were searched for studies published up to November 2023 on the clinical outcomes of MDR bacteria in DFUs. The main outcome was the prevalence of MDR bacteria in DFUs. A total of 21 studies were included, representing 4885 patients from which 2633 MDR bacterial isolates were obtained. The prevalence of MDR bacteria in DFUs was 50.86% (95% confidence interval (CI): 41.92%-59.78%). The prevalence of MDR gram-positive bacteria (GPB) in DFUs was 19.81% (95% CI: 14.35%-25.91%), and the prevalence of MDR gram-negative bacteria (GNB) in DFUs was 32.84% (95% CI: 26.40%-39.62%). MDR Staphylococcus aureus (12.13% (95% CI: 8.79%-15.91%)) and MDR Enterococcus spp. (3.33% (95% CI: 1.92%-5.07%)) were the main MDR-GPB in DFUs. MDR Escherichia coli, MDR Pseudomonas aeruginosa, MDR Enterobacter spp., MDR Klebsiella pneumoniae, and MDR Proteus mirabilis were the main MDR-GNB in DFUs. The prevalence rates were 6.93% (95% CI: 5.15%-8.95%), 6.01% (95% CI: 4.03%-8.33%), 3.59% (95% CI: 0.42%-9.30%), 3.50% (95% CI: 2.31%-4.91%), and 3.27% (95% CI: 1.74%-5.21%), respectively. The clinical variables of diabetic foot ulcer patients infected with MDR bacteria and non-MDR bacteria in the included studies were analysed. The results showed that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization and previous use of antibacterial drugs were significantly different between the MDR bacterial group and the non-MDR bacterial group. We concluded that there is a high prevalence of MDR bacterial infections in DFUs. The prevalence of MDR-GNB was greater than that of MDR-GPB in DFUs. MDR S. aureus was the main MDR-GPB in DFUs, and MDR E. coli was the main MDR-GNB in DFUs. Our study also indicated that peripheral vascular disease, peripheral neuropathy, nephropathy, osteomyelitis, Wagner's grade, previous hospitalization, and previous use of antibacterial drugs were associated with MDR bacterial infections in patients with DFUs.


Subject(s)
Bacterial Infections , Diabetes Mellitus , Diabetic Foot , Osteomyelitis , Peripheral Vascular Diseases , Humans , Diabetic Foot/epidemiology , Escherichia coli , Prevalence , Staphylococcus aureus , Anti-Bacterial Agents , Bacterial Infections/drug therapy , Bacterial Infections/epidemiology
13.
Apoptosis ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635022

ABSTRACT

Hypoxic pulmonary hypertension (HPH) is a pathophysiological syndrome in which pulmonary vascular pressure increases under hypoxic stimulation and there is an urgent need to develop emerging therapies for the treatment of HPH. LncRNA MIR210HG is a long non-coding RNA closely related to hypoxia and has been widely reported in a variety of tumor diseases. But its mechanism in hypoxic pulmonary hypertension is not clear. In this study, we identified for the first time the potential effect of MIR210HG on disease progression in HPH. Furthermore, we investigated the underlying mechanism through which elevated levels of MIR210HG promotes the transition from a contractile phenotype to a synthetic phenotype in PASMCs under hypoxia via activation of autophagy-dependent ferroptosis pathway. While overexpression of HIF-2α in PASMCs under hypoxia significantly reversed the phenotypic changes induced by MIR210HG knockdown. We further investigated the potential positive regulatory relationship between STAT3 and the transcription of MIR210HG in PASMCs under hypoxic conditions. In addition, we established both in vivo and in vitro models of HPH to validate the differential expression of specific markers associated with hypoxia. Our findings suggest a potential mechanism of LncRNA MIR210HG in the progression of HPH and offer potential targets for disease intervention and treatment.

14.
Front Microbiol ; 15: 1386552, 2024.
Article in English | MEDLINE | ID: mdl-38596379

ABSTRACT

A new strain of xanthan-degrading bacteria identified as Cohnella sp. has been isolated from a xanthan thickener for food production. The strain was able to utilize xanthan as the only carbon source and to reduce the viscosity of xanthan-containing medium during cultivation. Comparative analysis of the secretomes of Cohnella sp. after growth on different media led to the identification of a xanthanase designated as CspXan9, which was isolated after recombinant production in Escherichia coli. CspXan9 could efficiently degrade the ß-1,4-glucan backbone of xanthan after previous removal of pyruvylated mannose residues from the ends of the native xanthan side chains by xanthan lyase treatment (XLT-xanthan). Compared with xanthanase from Paenibacillus nanensis, xanthanase CspXan9 had a different module composition at the N- and C-terminal ends. The main putative oligosaccharides released from XLT-xanthan by CspXan9 cleavage were tetrasaccharides and octasaccharides. To explore the functions of the N- and C-terminal regions of the enzyme, truncated variants lacking some of the non-catalytic modules (CspXan9-C, CspXan9-N, CspXan9-C-N) were produced. Enzyme assays with the purified deletion derivatives, which all contained the catalytic glycoside hydrolase family 9 (GH9) module, demonstrated substantially reduced specific activity on XLT-xanthan of CspXan9-C-N compared with full-length CspXan9. The C-terminal module of CspXan9 was found to represent a novel carbohydrate-binding module of family CBM66 with binding affinity for XLT-xanthan, as was shown by native affinity polyacrylamide gel electrophoresis in the presence of various polysaccharides. The only previously known binding function of a CBM66 member is exo-type binding to the non-reducing fructose ends of the ß-fructan polysaccharides inulin and levan.

15.
Article in English | MEDLINE | ID: mdl-38573157

ABSTRACT

OBJECTIVE: To identify the risk factors for placenta accreta spectrum (PAS) disorders in women without prior cesarean section (CS). METHODS: This retrospective case-control study investigated patients without prior CS who gave birth at Peking University Third Hospital between January 1, 2015 and December 31, 2021. Patients diagnosed with PAS according to the clinical diagnostic criteria of the 2019 International Federation of Gynecology and Obstetrics (FIGO) classification were included as the study group. Patients were matched as the control group according to delivery date and placenta previa, in a 1:2 allocation ratio. Maternal characteristics were compared between the two groups. RESULTS: The study included 348 patients in the study group and 696 in the control group. The multivariate analysis showed that the independent risk factors of PAS consisted of operative hysteroscopy (once: adjusted odds ratio [aOR] 2.38, 95% CI 1.28-4.24, P = 0.006; twice or more: aOR 5.43, 95% CI 1.04-28.32, P = 0.045), uterine curettage (once: aOR 2.54, 95% CI 1.80-3.58, P < 0.001; twice: aOR 3.01, 95% CI 1.81-5.02, P < 0.001; three or more times: aOR 9.18, 95% CI 4.64-18.18, P < 0.001), multifetal pregnancy (aOR 5.64, 95% CI 3.01-10.57, P < 0.001), adenomyosis (aOR 2.77, 95% CI 1.23-6.22, P = 0.014), in vitro fertilization (aOR 1.51, 95% CI 1.04-2.20, P = 0.030) and pre-eclampsia (aOR 2.72, 95% CI 1.36-5.45, P = 0.005), and the independent protective factor was being multiparous (aOR 0.37, 95% CI 0.25-0.54, P < 0.001). CONCLUSION: After controlling the effect of placenta previa, we found that patients with PAS without prior CS had unique maternal characteristics. Classification and quantification of the intrauterine surgeries they have undergone is essential for identifying high-risk patients. Early identification of high-risk groups by risk factors has the potential to improve the prognosis considerably.

16.
Front Oncol ; 14: 1345288, 2024.
Article in English | MEDLINE | ID: mdl-38577330

ABSTRACT

Background: In patients with pulmonary nodules undergoing computed tomography (CT)-guided localization procedures, a range of liquid-based materials have been employed to date in an effort to guide video-assisted thoracoscopic surgery (VATS) procedures to resect target nodules. However, the relative performance of these different liquid-based localization strategies has yet to be systematically evaluated. Accordingly, this study was developed with the aim of examining the relative safety and efficacy of CT-guided indocyanine green (IG) and blue-stained glue (BSG) PN localization. Methods: Consecutive patients with PNs undergoing CT-guided localization prior to VATS from November 2021 - April 2022 were enrolled in this study. Safety and efficacy outcomes were compared between patients in which different localization materials were used. Results: In total, localization procedures were performed with IG for 121 patients (140 PNs), while BSG was used for localization procedures for 113 patients (153 PNs). Both of these materials achieved 100% technical success rates for localization, with no significant differences between groups with respect to the duration of localization (P = 0.074) or visual analog scale scores (P = 0.787). Pneumothorax affected 8 (6.6%) and 8 (7.1%) patients in the respective IG and BSG groups (P = 0.887), while 12 (9.9%) and 10 (8.8%) patients of these patients experienced pulmonary hemorrhage. IG was less expensive than BSG ($17.2 vs. $165). VATS sublobar resection procedure technical success rates were also 100% in both groups, with no instances of conversion to thoracotomy. Conclusions: IG and BSG both offer similarly high levels of clinical safety and efficacy when applied for preoperative CT-guided PN localization, with IG being less expensive than BSG.

17.
Biomed Chromatogr ; : e5873, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587039

ABSTRACT

Ziziphi Spinosae Semen (ZSS) and fried ZSS (FZSS) have been used for treating insomnia and depression in China. However, the potential influence of chemical variations on their efficacy remains unclear. This study demonstrated that compared with ZSS, FZSS exhibited an increase in the content of seven compounds, while the fatty oil content decreased. Both ZSS and FZSS exhibited antidepressive effects in a chronic unpredictable mild stress rat model, indicating a synergistic regulation of deficiencies in 5-hydroxytryptamine in the brain and the hyperactivation of severe peripheral inflammation. ZSS demonstrated a superior modulatory effect compared with FZSS, as indicated by integrated pharmacodynamic index, metabolic profile, and relative distance value. The potential mechanism underlying their antidepressive effects involved the modulation of gut microbiota structure to alleviate excessive inflammatory responses and imbalanced tryptophan metabolism. Correlation analysis indicated that the higher fatty oil contents should be comprehensively considered as the main reason for ZSS's superior antidepressive effects, achieved through the regulation of pyroglutamic acid levels.

18.
Nat Prod Bioprospect ; 14(1): 25, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656633

ABSTRACT

Breviscapine, a natural flavonoid mixture derived from the traditional Chinese herb Erigeron breviscapus (Vant.) Hand-Mazz, has demonstrated a promising potential in improving diabetic nephropathy (DN). However, the specific active constituent(s) responsible for its therapeutic effects and the underlying pharmacological mechanisms remain unclear. In this study, we aimed to investigate the impact of scutellarin, a constituent of breviscapine, on streptozotocin-induced diabetic nephropathy and elucidate its pharmacological mechanism(s). Our findings demonstrate that scutellarin effectively ameliorates various features of DN in vivo, including proteinuria, glomerular expansion, mesangial matrix accumulation, renal fibrosis, and podocyte injury. Mechanistically, scutellarin appears to exert its beneficial effects through modulation of the transforming growth factor-ß1 (TGF-ß1) signaling pathway, as well as its interaction with the extracellular signal-regulated kinase (Erk) and Wnt/ß-catenin pathways.

19.
Polymers (Basel) ; 16(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38543378

ABSTRACT

High-performance thermally conductive composites are increasingly vital due to the accelerated advancements in communication and electronics, driving the demand for efficient thermal management in electronic packaging, light-emitting diodes (LEDs), and energy storage applications. Controlling the orderly arrangement of fillers within a polymer matrix is acknowledged as an essential strategy for developing thermal conductive composites. In this study, isotactic polypropylene/GNP (iPP/GNP) composite filament tailored for fused deposition modeling (FDM) was achieved by combining ball milling with melt extrusion processing. The rheological properties of the composites were thoroughly studied. The shear field and pressure field distributions during the FDM extrusion process were simulated and examined using Polyflow, focusing on the influence of the 3D printing processing flow field on the orientation of GNP within the iPP matrix. Exploiting the unique capabilities of FDM and through strategic printing path design, thermally conductive composites with GNPs oriented in the through-plane direction were 3D printed. At a GNP content of 5 wt%, the as-printed sample demonstrated a thermal conductivity of 0.64 W/m · K, which was 1.5 times the in-plane thermal conductivity for 0.42 W/m · K and triple pure iPP for 0.22 W/m · K. Effective medium theory (EMT) model fitting results indicated a significantly reduced interface thermal resistance in the through-plane direction compared to the in-plane direction. This work shed brilliant light on developing PP-based thermal conductive composites with arbitrarily-customized structures.

20.
J Hazard Mater ; 469: 134093, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38522199

ABSTRACT

The inadequate understanding of the biofouling formation mechanism and the absence of effective control have inhibited the commercial application of membrane distillation (MD). In this study, an advanced oxidation process (AOP)/coagulation-coupled (Coag) membrane distillation system was proposed and exhibited the potential for MD ammonia recovery (recovery rate: 94.1%). Extracellular polymeric substances (EPS) and soluble microbial products (SMP) components such as humic acid and tryptophan-like proteins were disrupted and degraded in the digestate. The curtailment and sterilizing efficiency of AOP on biofilm growth was also verified by optical coherence tomography (OCT) in situ real-time monitoring and confocal laser scanning microscopy (CLSM). Peroxymonosulfate (PMS) was activated to generate sulfate (SO4•-) and hydroxyl radicals (HO•), which altered the microbial community. After oxidative treatment, 16 S rRNA sequencing indicated that the dominant phylum of the microbial community evolved into Firmicutes. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that free radicals produced by PMS could disrupt cells' signaling molecules and interactions. In conjunction with these analyses, the mechanisms of response to free radical attack by Gram-negative bacteria, Gram-positive bacteria, and fungi were revealed. This research provided new insights into the field of membrane fouling control for membrane technology resource recovery processes, broadening the impact of AOP applications on microbiological response and fate in the environment.


Subject(s)
Biofouling , Biofouling/prevention & control , Ammonia , Distillation , Membranes, Artificial , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...