Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Molecules ; 28(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37241893

ABSTRACT

Hydrophobically associating polymers have found widespread applications in many domains due to their unique rheological behavior, which is primarily dictated by the hydrophobe content. However, the low fraction of hydrophobic monomers in polymers makes this parameter's precise and straightforward measurement difficult. Herein, a variety of hydrophobically associating polyacrylamides (HAPAM) with different alkyl chain lengths (L) and hydrophobic contents ([H]) were prepared by post-modification and accurately characterized by 1H NMR spectroscopy. The maximal fluorescence emission intensity (I) of 8-anilino-1-naphthalenesulfonic acid, which is sensitive to hydrophobic environments, was then detected in those polymer solutions and shown as a ratio to that in the polymer-free solution (I0). It was found that I/I0 for 0.5 wt% HAPAM can be scaled versus CH, which is a variate related to both L and [H], as I/I0 = 1.15 + 1.09 × 108CH3.42, which was also verified to be applicable for hydrophobic associating hydrolyzed polyacrylamide (HHAPAM). This relationship provides a handy method for determining the hydrophobic content of hydrophobically associating polymers, particularly for field applications.

2.
Org Biomol Chem ; 18(35): 6889-6898, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32852493

ABSTRACT

An efficient and enviromentally friendly CuBr/NHPI co-catalyzed aerobic oxidative [3 + 2] cycloaddition-aromatization cascade was realized with N-substituted tetrahydroisoquinolines and electron-deficient olefins. Under the mild conditions, the reaction proceeded smoothly and displayed excellent functional group tolerance, affording 5,6-dihydro-pyrrolo[2,1-a]isoquinolines in good to high yields. This protocol exhibits a broad substrate scope to both N-alkyl tetrahydroisoquinolines and dipolarophile substrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...