Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38610494

ABSTRACT

Accurately and effectively detecting the growth position and contour size of apple fruits is crucial for achieving intelligent picking and yield predictions. Thus, an effective fruit edge detection algorithm is necessary. In this study, a fusion edge detection model (RED) based on a convolutional neural network and rough sets was proposed. The Faster-RCNN was used to segment multiple apple images into a single apple image for edge detection, greatly reducing the surrounding noise of the target. Moreover, the K-means clustering algorithm was used to segment the target of a single apple image for further noise reduction. Considering the influence of illumination, complex backgrounds and dense occlusions, rough set was applied to obtain the edge image of the target for the upper and lower approximation images, and the results were compared with those of relevant algorithms in this field. The experimental results showed that the RED model in this paper had high accuracy and robustness, and its detection accuracy and stability were significantly improved compared to those of traditional operators, especially under the influence of illumination and complex backgrounds. The RED model is expected to provide a promising basis for intelligent fruit picking and yield prediction.

2.
Mol Cell Biochem ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635080

ABSTRACT

Congenital heart disease (CHD) represents a significant risk factor with profound implications for neonatal survival rates and the overall well-being of adult patients. The emergence of induced pluripotent stem cells (iPSCs) and their derived cells, combined with CRISPR technology, high-throughput experimental techniques, and organoid technology, which are better suited to contemporary research demands, offer new possibilities for treating CHD. Prior investigations have indicated that the paracrine effect of exosomes may hold potential solutions for therapeutic intervention. This review provides a summary of the advancements in iPSC-based models and clinical trials associated with CHD while elucidating potential therapeutic mechanisms and delineating clinical constraints pertinent to iPSC-based therapy, thereby offering valuable insights for further deliberation.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36558241

ABSTRACT

Perovskite photodetectors have attracted much research and attention because of their outstanding photoelectric characteristics, such as good light harvesting capability, excellent carrier migration behavior, tunable band gap, and so on. Recently, the reported studies mainly focus on materials synthesis, device structure design, interface engineering and physical mechanism analysis to improve the device characteristics, including stability, sensitivity, response speed, device noise, etc. This paper systematically summarizes the application fields and device structures of several perovskite photodetectors, including perovskite photoconductors, perovskite photodiodes, and perovskite phototransistors. Moreover, based on their molecular structure, 3D, 2D, 1D, and 0D perovskite photodetectors are introduced in detail. The research achievements and applications of perovskite photodetectors are summarized. Eventually, the future research directions and main challenges of perovskite photodetectors are prospected, and some possible solutions are proposed. The aim of the work is to provide a new thinking direction for further improving the performance of perovskite photodetectors.

4.
Nanomaterials (Basel) ; 11(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34947591

ABSTRACT

Nowadays, Mn-doping is considered as a promising dissolution for the heavy usage of toxic lead in CsPbX3 perovskite material. Interestingly, Mn-doping also introduces an additional photoluminescence band, which is favorable to enrich the emission gamut of this cesium lead halide. Here, a solution spraying strategy was employed for the direct preparation of CsPbxMn1-x(Br,Cl)3 film through MnCl2 doping in host CsPbBr3 material. The possible fabrication mechanism of the provided approach and the dependences of material properties on Mn-doping were investigated in detail. As the results shown, Pb was partially substituted by Mn as expected. With the ratio of PbBr2:MnCl2 increasing from 3:0 to 1:1, the obtained film separately featured green, cyan, orange-red and pink-red emission, which was caused by the energy transferring process. Moreover, the combining energy of Cs, Pb, and Mn gradually red-shifted resulted from the formation of Cs-Cl, Pb-Cl and Mn-Br coordination bonding as MnCl2 doping increased. In addition, the weight of short decay lifetime of prepared samples increased with the doping rising, which indicated a better exciton emission and less defect-related transition. The aiming of current work is to provide a new possibility for the facile preparation of Mn-doping CsPbX3 film material.

5.
ACS Appl Mater Interfaces ; 10(21): 18351-18358, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29745640

ABSTRACT

Porous organic cage, a kind of newly emerging soluble crystalline porous material, is introduced to proton-exchange membrane by in situ crystallization. The crystallized Cage 3 with intrinsic water-meditated three-dimensional interconnected proton pathways working together with Nafion matrix generates a composite membrane with highly improved proton conductivity. Different from inorganic crystalline porous materials, like metal-organic frameworks, the organic porous material shows better compatibility with Nafion matrix due to the absence of inorganic elements. In addition, Cage 3 can absorb water up to 20.1 wt %, which effectively facilitates proton conduction under both high- and low-humidity conditions. Meanwhile, the selectivity of Nafion-Cage 3 composite membrane is also elevated upon the loading of Cage 3. The proton conductivity is evidently enhanced without obvious increased methanol permeability. At 90 °C and 95% RH, the proton conductivity of NC3-5 reaches 0.27 S·cm-1, highly improved compared to 0.08 S·cm-1 of recast Nafion under the same condition. This study offers a new strategy for modifying proton-exchange membrane with crystalline porous materials.

6.
Cell Physiol Biochem ; 37(3): 901-10, 2015.
Article in English | MEDLINE | ID: mdl-26384017

ABSTRACT

BACKGROUND/AIMS: The present study aims to explore the protective role and mechanism of ginsenoside Rg1 combined with bone marrow mesenchymal stem cell (BMSC) transplantation for cerebral ischemia reperfusion injury (CIRI) in rat brain. METHODS: One hundred twenty male SD rats were randomly divided into a sham group, an Ischemia Reperfusion (IR) group, an IR group treated with BMSC transplantation (IR+BMSCs), an IR group treated with Rg1 (IR+Rg1), and an IR group treated with BMSC transplantation and Rg1 (IR+Rg1+BMSCs). To establish a CIRI model, right middle cerebral artery embolization was used. The neurological score, 2,3,5-triphenyltet-razolium chloride monohydrate (TTC) staining and brain water content were detected to assess the treatment efficiency. HE staining and TUNEL were used to explore the pathologic changes and apoptosis. To explore the protein levels of neuron-specific enolase (NSE) and glial fibrillary acidic protein (GFAP), immunofluoresence was utilized. Western blotting was used to explore apoptosis-related proteins such as Bcl-2 and Bax. RESULTS: Compared with the sham group, the IR group demonstrated obvious ischemic changes, such as significant neurologic defects and enhanced brain water content. The Rg1 treatment resulted in an obvious decrease in cell apoptosis and improved ischemic conditions. By BMSC transplantation, the transplanted cells could be differentiated into neurons and glial cells, which also improved cerebral ischemia. More importantly, the IR+Rg1+BMSCs group showed the best treatment efficiency with reduced cell apoptosis and better cerebral recovery. CONCLUSIONS: The Rg1 treatment resulted in an obvious decrease in cell apoptosis, while the transplanted cells could be differentiated into neurons and glial cells, which also improved cerebral ischemia.


Subject(s)
Brain Ischemia/therapy , Ginsenosides/administration & dosage , Mesenchymal Stem Cell Transplantation/methods , Neuroprotective Agents/administration & dosage , Reperfusion Injury/therapy , Animals , Apoptosis/drug effects , Brain Ischemia/etiology , Brain Ischemia/physiopathology , Cell Differentiation , Combined Modality Therapy , Disease Models, Animal , Gene Expression Regulation/drug effects , Ginsenosides/therapeutic use , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Neuroprotective Agents/therapeutic use , Phosphopyruvate Hydratase/metabolism , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...