Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 33(10): 2743-2752, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384610

ABSTRACT

In this study, we examined plant C:N:P stoichiometry of herbaceous plants in different sections (stable area, unstable area and deposition area) of the unstable slope on both shade and sunny aspects of dry-hot valley with different soil properties. The results showed that C concentration (320.59 g·kg-1), N concentration (12.15 g·kg-1), and N:P ratio (25.37) of shoot on the unstable slope were significantly higher than those of root, with 254.01 g·kg-1, 6.12 g·kg-1 and 13.43, respectively. The average value of the C:N ratio was significantly higher in root (43.09) than shoot (31.90). The C content and N:P ratio of shoot and root in stable and unstable areas were significantly higher than in deposition area, whereas the N content in unstable area was significantly higher than that in deposition area on the sunny slope. In addition, the N and P contents of shoot and the root P content in deposition area were significantly higher than in stable and unstable areas, whereas the C content of root in stable and unstable areas were significantly higher than in deposition area on the shade slope. Moreover, the shoot growth of plants was mainly limited by P, whereas root growth was mainly limited by N and the limitation gradually increased as the section goes down. Soil water content (SWC) was an important factor controlling the C, N, and P contents change of shoot with the relative influence ratios of 28.8%, 20.8%, and 19.9%, respectively. Soil organic carbon (SOC) had a significant impact on the C and P contents of root with the relative influence ratios of 49.5% and 22.1%. The change of root N content was mainly affected by soil pH (24.3%). Our results revealed that nutrient allocation of plant was significantly affected by slope aspects, sections and soil factors, which were mainly constituted by SWC, SOC, and soil pH.


Subject(s)
Carbon , Soil , Soil/chemistry , Plants , Water , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...