Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 659: 550-559, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38198932

ABSTRACT

From the swollen LDH, bulky [Mo3S13]2- anions are facilely introduced into the LDH interlayers to assemble the Mo3S13-LDH composite, which exhibits excellent iodine capture performance and good irradiation resistance. The positive-charged LDH layers may disperse the [Mo3S13]2- uniformly within the interlayers, providing abundant adsorption sites for effectively trapping iodine. The Mo-S bond serving as a soft Lewis base has strong affinity to I2 with soft Lewis acidic characteristic, which is conducive to improvement of iodine capture via physical sorption. Besides, chemisorption has a significant contribution to the iodine adsorption. The S22-/S2- in [Mo3S13]2- can reduce the I2 to [I3]- ions, which are facilely fixed within the LDH gallery in virtue of electrostatic attraction. Meanwhile, the S22-/S2- themselves are oxidized to S8 and SO42-, while Mo4+ is oxidized (by O2 in air) to Mo6+, which combines with SO42- forming amorphous Mo(SO4)3. With the collective interactions of chemical and physical adsorption, the Mo3S13-LDH demonstrates an extremely large iodine adsorption capacity of 1580 mg/g. Under γ radiation, the structure of Mo3S13-LDH well maintains and iodine adsorption capability does not deteriorate, indicating the good irradiation resistance. This work provides an important reference to tailor cost-effective sorbents for trapping iodine from radioactive nuclear wastes.

2.
Article in English | MEDLINE | ID: mdl-37906218

ABSTRACT

The development of low-cost and high-efficiency iodine sorbents is of great significance for the control of nuclear pollution. In this work, we intercalate the tin sulfide cluster of [Sn2S6]4- to Mg/Al-type layered double hydroxides to obtain Sn2S6-LDH, which exhibits highly efficient capture performance of iodine vapor and iodine in solutions. The dispersion effect of the positively charged LDH layers contributes to the adequate exposure of [Sn2S6]4- anions, providing plentiful adsorption sites. For iodine vapor, Sn2S6-LDH showed an extremely large iodine capture capacity of 2954 mg/g with a large contribution from physisorption. For iodine in solutions, a significantly large sorption capacity of 1308 mg/g was achieved. During iodine capture, I2 molecules were reduced to I- ions (by S2- in [Sn2S6]4-), which then reacted with Sn4+ to form SnI4, where the molar amount of captured iodine is 4-fold that of Sn. Besides, the as-reduced I- combined with I2 again to generate [I3]-, which then entered the LDH interlayers to maintain electric neutrality. While reducing iodine, S2- itself in [Sn2S6]4- was oxidized to S8, which further combined with SnI4 to form a novel compound of SnI4(S8)2. The excellent iodine capture capability endows Sn2S6-LDH with a promising application in trapping radioactive iodine.

SELECTION OF CITATIONS
SEARCH DETAIL
...