Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Biochem Pharmacol ; 220: 116016, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38176619

ABSTRACT

Cytochrome P450 3A4 (CYP3A4) is the most important and abundant drug-metabolizing enzyme in the human liver. Inter-individual differences in the expression and activity of CYP3A4 affect clinical and precision medicine. Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the regulation of CYP3A4 expression. Here, we showed that lncRNA hepatocyte nuclear factor 1 alpha-antisense 1 (HNF1A-AS1) exerted dual functions in regulating CYP3A4 expression in Huh7 and HepG2 cells. Mechanistically, HNF1A-AS1 served as an RNA scaffold to interact with both protein arginine methyltransferase 1 and pregnane X receptor (PXR), thereby facilitating their protein interactions and resulting in the transactivation of PXR and transcriptional alteration of CYP3A4 via histone modifications. Furthermore, HNF1A-AS1 bound to the HNF1A protein, a liver-specific transcription factor, thereby blocking its interaction with the E3 ubiquitin ligase tripartite motif containing 25, ultimately preventing HNF1A ubiquitination and protein degradation, further regulating the expression of CYP3A4. In summary, these results reveal the novel functions of HNF1A-AS1 as the transcriptional and post-translational regulator of CYP3A4; thus, HNF1A-AS1 may serve as a new indicator for establishing or predicting individual differences in CYP3A4 expression.


Subject(s)
RNA, Long Noncoding , Humans , Cytochrome P-450 CYP3A/genetics , Gene Expression Regulation , Hepatocyte Nuclear Factor 1-alpha/genetics , Liver , RNA, Long Noncoding/genetics
2.
Front Cardiovasc Med ; 10: 1194311, 2023.
Article in English | MEDLINE | ID: mdl-37583580

ABSTRACT

Heart Failure (HF) is a complex clinical syndrome in which the heart is unable to provide enough blood flow to meet metabolic needs and lacks efficient venous return. HF is a major risk factor for morbidity and mortality with cardiovascular diseases globally. Despite enormous research, the molecular markers relevant to disease prognosis and management remain not well understood. Here, we analyzed the whole transcriptomes of 18 failing hearts and 15 non-failing hearts (predominantly of Caucasian origin), by applying the standard in silico tools. The analyses revealed novel gene-markers including ALKBH5 of mRNA demethylation and KMT2E of histone modification processes, significantly over-expressed in the HF compared with the non-failing hearts (FDR < 0.05). To validate the over-expression of ALKBH5, we determined the global m6A level in hypoxic H9c2 cells using a dot blot assay. The global m6A level was found markedly lower in the hypoxic H9c2 cells than in the control cells. Additionally, the expression of ALKBH5 in the H9c2 cells was quantified by the qPCR and found to be 1.18 times higher at 12 h (p < 0.05), and 1.67 times higher at 24 h of hypoxia (p < 0.01) compared with the control cells, indicating a likely role of ALKBH5 in the failing cardiac cells. Furthermore, we identified several compounds through the virtual screening of 11,272 drug-like molecules of the ZINC15 database to inhibit the ALKBH5 in a molecular docking process. Collectively, the study revealed novel markers potentially involved in the pathophysiology of HF and suggested plausible therapeutic molecules for the management of the disease.

3.
iScience ; 26(8): 107391, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554438

ABSTRACT

Levofloxacin-induced severe cutaneous adverse drug reactions (LEV-SCARs) remain unexplored. An association study of human leukocyte antigen (HLA) alleles with LEV-SCARs among 12 patients, 806 healthy subjects, and 100 levofloxacin-tolerant individuals was performed. The carrier frequencies of HLA-B∗13:01 (odds ratio [OR]: 4.50; 95% confidence interval [CI]: 1.15-17.65; p = 0.043), HLA-B∗13:02 (OR: 6.14; 95% CI: 1.73-21.76; p = 0.0072), and serotype B13 (OR: 17.73; 95% CI: 3.61-86.95; p = 4.85 × 10-5) in patients with LEV-SCARs were significantly higher than those of levofloxacin-tolerant individuals. Molecular docking analysis suggested that levofloxacin formed more stable binding models with HLA-B∗13:01 and HLA-B∗13:02 than with non-risk HLA-B∗46:01. Mass spectrometry revealed that nonapeptides bound to HLA-B∗13:02 shifted at several positions after exposure to levofloxacin. Prospective screening for serotype B13 (sensitivity: 83%, specificity: 78%) and alternative drug treatment for carriers may significantly decrease the incidence of LEV-SCARs.

4.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-37259293

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.

5.
Toxics ; 11(1)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36668808

ABSTRACT

Inflammation is a major regulator of drug-metabolizing enzymes (DMEs), therefore contributing to the interindividual variability of drug effects. However, whether prenatal inflammation affects DMEs expression in offspring remains obscure. This study investigated the effects of prenatal lipopolysaccharide (LPS) exposure on hepatic expression of inflammatory-related genes, nuclear receptors, and DMEs in offspring mice. Prenatal LPS exposure on gestational day (GD) 10 led to higher expression of NF-κB, Pxr, and Cyp2b10, while lower expression of Car, Ahr, Cyp3a11, and Ugt1a1 in postnatal day (PD) 30 offspring. However, multiple doses of LPS exposure on GD10-14 resulted in higher levels of inflammatory-related genes, Cyp1a2, and Cyp2b10, and lower levels of Pxr and Cyp3a11 in PD30 offspring liver. For PD60 offspring, decreased hepatic expression of NF-κB and IL-6, and increased expression of Pxr and Cyp3a11 were seen in single-dose LPS groups, whereas opposite results were observed in the multiple-dose LPS groups. Notably, enhanced H3K4me3 levels in the PXR response elements of the Cyp3a11 promoter were observed in the liver of PD60 offspring mice from dams treated with multiple doses of LPS during pregnancy. Overall, this study suggests that parental LPS exposure could persistently alter the hepatic expression of DMEs, and histone modifications may contribute to the long-term effects.

6.
BMC Genomics ; 23(1): 576, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953789

ABSTRACT

AIM: To analyze and compare the mRNA N6-methyladenosine modifications in transverse aortic constriction induced mice hearts and normal mice hearts. MATERIALS AND METHODS: Colorimetric quantification was used to probe the changes in m6A modifications in the total RNA. The expression of m6A-related enzymes was analyzed via qRT-PCR and western blotting. RNA-seq and MeRIP-seq were performed to identify genes with differences in m6A modifications or expression in the transcriptome profile. RESULTS: Compared with the control group, the TAC group exhibited higher m6A methylation levels. FTO and WTAP were downregulated after TAC, while METTL3 was significantly downregulated at the protein level. MeRIP-seq revealed that 1179 m6A peaks were upmethylated and 733 m6A peaks were downmethylated, and biological analysis of these genes exhibited a strong relationship with heart function. CONCLUSION: Our findings provide novel information regarding m6A modification and gene expression changes in cardiac hypertrophy, which may be fundamental for further research.


Subject(s)
Adenosine , Transcriptome , Adenosine/metabolism , Animals , Cardiomegaly/genetics , Methylation , Mice , RNA, Messenger/genetics
7.
Immunol Res ; 70(5): 607-623, 2022 10.
Article in English | MEDLINE | ID: mdl-35608723

ABSTRACT

Myocardial infarction (MI) is a life-threatening condition among patients with cardiovascular diseases. MI increases the risk of stroke and heart failure and is a leading cause of morbidity and mortality worldwide. Several genetic and epigenetic factors contribute to the development of MI, suggesting that further understanding of the pathomechanism of MI might help in the early management and treatment of this disease. Toll-like receptors (TLRs) are well-known members of the pattern recognition receptor (PRR) family and contribute to both adaptive and innate immunity. Collectively, studies suggest that TLRs have a cardioprotective effect. However, prolonged TLR activation in the response to signals generated by damage-associated molecular patterns (DAMPs) results in the release of inflammatory cytokines and contributes to the development and exacerbation of myocardial inflammation, MI, ischemia-reperfusion injury, myocarditis, and heart failure. The objective of this review is to discuss and summarize the association of TLRs with MI, highlighting their therapeutic potential for the development of advanced TLR-targeted therapies for MI.


Subject(s)
Heart Failure , Myocardial Infarction , Myocarditis , Cytokines , Humans , Myocardial Infarction/therapy , Receptors, Pattern Recognition , Toll-Like Receptors
8.
Cell Death Differ ; 29(10): 2060-2069, 2022 10.
Article in English | MEDLINE | ID: mdl-35477991

ABSTRACT

Subcellular machinery of NLRP3 is essential for inflammasome assembly and activation. However, the stepwise process and mechanistic basis of NLRP3 engagement with organelles remain unclear. Herein, we demonstrated glycogen synthase kinase 3ß (GSK3ß) as a molecular determinant for the spatiotemporal dynamics of NLRP3 inflammasome activation. Using live cell multispectral time-lapse tracking acquisition, we observed that upon stimuli NLRP3 was transiently associated with mitochondria and subsequently recruited to the Golgi network (TGN) where it was retained for inflammasome assembly. This occurred in relation to the temporal contact of mitochondria to Golgi apparatus. NLRP3 stimuli initiate GSK3ß activation with subsequent binding to NLRP3, facilitating NLRP3 recruitment to mitochondria and transition to TGN. GSK3ß activation also phosphorylates phosphatidylinositol 4-kinase 2 Α (PI4k2A) in TGN to promote sustained NLRP3 oligomerization. Our study has identified the interplay between GSK3ß signaling and the organelles dynamics of NLRP3 required for inflammasome activation and opens new avenues for therapeutic intervention.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , 1-Phosphatidylinositol 4-Kinase , Glycogen Synthase Kinase 3 beta , Golgi Apparatus/metabolism , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Acta Pharmacol Sin ; 43(9): 2289-2301, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35132192

ABSTRACT

Connexin 43 (Cx43) is the most important protein in the gap junction channel between cardiomyocytes. Abnormalities of Cx43 change the conduction velocity and direction of cardiomyocytes, leading to reentry and conduction block of the myocardium, thereby causing arrhythmia. It has been shown that IL-1ß reduces the expression of Cx43 in astrocytes and cardiomyocytes in vitro. However, whether caspase-1 and IL-1ß affect connexin 43 after myocardial infarction (MI) is uncertain. In this study we investigated the effects of VX765, a caspase-1 inhibitor, on the expression of Cx43 and cell-to-cell communication after MI. Rats were treated with VX765 (16 mg/kg, i.v.) 1 h before the left anterior descending artery (LAD) ligation, and then once daily for 7 days. The ischemic heart was collected for histochemical analysis and Western blot analysis. We showed that VX765 treatment significantly decreased the infarct area, and alleviated cardiac dysfunction and remodeling by suppressing the NLRP3 inflammasome/caspase-1/IL-1ß expression in the heart after MI. In addition, VX765 treatment markedly raised Cx43 levels in the heart after MI. In vitro experiments were conducted in rat cardiac myocytes (RCMs) stimulated with the supernatant from LPS/ATP-treated rat cardiac fibroblasts (RCFs). Pretreatment of the RCFs with VX765 (25 µM) reversed the downregulation of Cx43 expression in RCMs and significantly improved intercellular communication detected using a scrape-loading/dye transfer assay. We revealed that VX765 suppressed the activation of p38 MAPK signaling in the heart tissue after MI as well as in RCMs stimulated with the supernatant from LPS/ATP-treated RCFs. Taken together, these data show that the caspase-1 inhibitor VX765 upregulates Cx43 expression and improves cell-to-cell communication in rat heart after MI via suppressing the IL-1ß/p38 MAPK pathway.


Subject(s)
Caspase 1 , Connexin 43 , Myocardial Infarction , Animals , Rats , Adenosine Triphosphate/pharmacology , Arrhythmias, Cardiac , Caspase 1/metabolism , Caspase 1/pharmacology , Caspase Inhibitors/pharmacology , Caspases , Cell Communication/drug effects , Connexin 43/genetics , Connexin 43/metabolism , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Myocardial Infarction/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Serpins , Viral Proteins , Gene Expression/drug effects
10.
Eur J Pharmacol ; 920: 174830, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35182545

ABSTRACT

We previously demonstrated that GSK-3ß mediates NLRP3 inflammasome activation and IL-1ß production in cardiac fibroblasts (CFs) after myocardial infarction (MI). In this study, we show how GSK-3ß-mediated activation of the NLRP3 inflammasome/caspase-1/IL-1ß pathway leads to apoptosis and pyroptosis of cardiomyocytes (CMs) and CFs. Administration of lipopolysaccharide (LPS)/ATP to primary newborn rat cardiac fibroblasts (RCFs) led to increase in proteins of NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), caspase-1, IL-1ß, and IL-18. Additionally, the expression of caspase-3 and N-terminal fragments of gasdermin D (N-GSDMD) and the Bax/Bcl-2 ratio increased. Administration of the GSK-3ß inhibitor SB216763 reduced the levels of apoptosis- and pyroptosis-related proteins regulated by NLRP3 inflammasome activation in RCFs. Next, we transferred the culture supernatant of LPS/ATP-treated RCFs to in vitro primary newborn rat cardiomyocytes (RCMs). The results showed that SB216763 attenuate the upregulation of the ratios of Bax/Bcl-2 and the expression of caspase-3 and N-GSDMD in RCMs. Direct stimulation of RCMs and H9c2 cells with recombinant rat IL-1ß increased the p-GSK-3ß/GSK-3ß and Bax/Bcl-2 ratios and the expression of caspase-3 and N-GSDMD, while both SB216763 and TLR1 (an IL-1ß receptor inhibitor) markedly reduced these effects, as assessed using propidium iodide positive staining and the lactate dehydrogenase release assay. The caspase-11 inhibitor wedelolactone decreased the expression level of N-GSDMD but did not alter the p-GSK-3ß/GSK-3ß ratio. Lastly, we established a Sprague-Dawley rat MI model to confirm that SB216763 diminished the increase in caspase-3 and N-GSDMD expression and the Bax/Bcl-2 ratio in the ischemic area. These data demonstrate that GSK-3ß regulates apoptosis and pyroptosis of RCMs and RCFs due to NLRP3 inflammasome activation in RCFs.


Subject(s)
Inflammasomes , Pyroptosis , Animals , Apoptosis , Fibroblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Inflammasomes/metabolism , Interleukin-1beta/metabolism , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats , Rats, Sprague-Dawley
12.
J Interv Card Electrophysiol ; 63(2): 239-248, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33611692

ABSTRACT

BACKGROUND: Abnormal ion channel currents caused by myocardial electrical remodeling is one of the main causes of malignant arrhythmias. Glycogen synthase kinase 3ß (GSK-3ß) is the main therapeutic target following ischemia as it regulates nerve cell channels. However, few studies have investigated its role in myocardial electrical remodeling. The present study aimed to investigate the role of GSK-3ß in a rat myocardial infarction (MI)-induced electrical remodeling and potential effects on cardiac ionic channels including KCNJ2/Kir2.1/IK1. METHODS: Ligation of the left anterior descending artery in rats was performed to establish a MI model. The rats were randomly divided into three groups, the sham, MI, and MI + SB group. The animals in the latter group were administered SB216763 (GSK-3ß inhibitor) at a dose of 0.6 mg·kg-1·day-1. The ventricular function was assessed by echocardiography, electrocardiography, and histological analysis 7 days post-surgery. Serum was collected to measure lactate dehydrogenase and cardiac troponin I levels, and the mRNA and protein levels of the KCNJ2/Kir2.1/IK1 channel in the heart tissues were assessed. H9c2 cells were cultured to examine the effects of SB216763 on the protein expression of Kir2.1 channel under hypoxic conditions. RESULTS: The results revealed that SB216763 ameliorated acute cardiac injury and improved myocardial dysfunction. Moreover, SB216763 increased the mRNA and protein expression of Kir2.1 during MI. Furthermore, SB216763 treatment abrogated the decreased expression of Kir2.1 in H9c2 cells under hypoxic conditions. CONCLUSIONS: GSK-3ß inhibition upregulates Kir2.1 expression in a rat model of MI.


Subject(s)
Indoles , Myocardium , Animals , Glycogen Synthase Kinase 3 beta , Humans , Indoles/pharmacology , Maleimides/pharmacology , Rats
13.
Sleep Breath ; 26(4): 2025-2033, 2022 12.
Article in English | MEDLINE | ID: mdl-34839464

ABSTRACT

PURPOSE: To investigate the association of sleep duration with type 2 diabetes mellitus (T2DM) in a rural Chinese population. METHODS: A 1:1 matched nested case-control study was performed based on a cohort that had been established in rural communities in Henan Province, China. T2DM patients and healthy controls (550 pairs) were included in this study. RESULTS: Abnormal sleep duration significantly increased the risk of T2DM with an approximate U-shaped association (sleep duration ≤ 6 h, OR = 1.742, 95% CI = 1.007-3.011, P = 0.047; sleep duration 8-9 h, OR = 1.462, 95% CI = 1.038-2.060, P = 0.030) compared with participants with a night sleep duration of 7-8 h, after adjusting for multiple confounders. When stratified by gender, only women were sensitive to shorter sleep duration (OR = 2.483, 95% CI = 1.149-5.366, P = 0.021). Abnormal sleep duration (too short or too long) had adverse effects on homeostasis model assessment (HOMA) and blood metabolites, and the effect was more noticeable in people with longer sleep durations. CONCLUSION: In a rural Chinese population, both too short and too long sleep duration increased the risk of T2DM. Especially women with less sleep duration have a higher risk of T2DM. Abnormal sleep also affects the HOMA index and metabolites; the relationship between HOMA-IR, total cholesterol, and LDL-Cholesterol with sleep duration was U-shaped, while fasting plasma glucose, body mass index, waist circumference, and triglyceride levels increased significantly only with longer sleep duration.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Female , Diabetes Mellitus, Type 2/epidemiology , Rural Population , Case-Control Studies , Risk Factors , China/epidemiology , Sleep , Cholesterol , Blood Glucose/metabolism
14.
Front Cardiovasc Med ; 9: 1090601, 2022.
Article in English | MEDLINE | ID: mdl-36684601

ABSTRACT

Doxorubicin (Dox) is a widely used clinical drug whose cardiotoxicity cannot be ignored. Pyroptosis (inflammatory cell death) has gradually gained attention in the context of Dox-induced cardiotoxicity. In addition to the inhibition of platelet activation by ticagrelor, little is known about its other pharmacological effects. Glycogen synthase kinase 3ß (GSK-3ß) has been shown to contribute to the pathological process of pyroptosis, but whether it is related to the potential role of ticagrelor is unclear. In this study, we investigated the effects of ticagrelor on Dox-induced pyroptosis in cardiomyocytes. Rats were treated with ticagrelor (7.5 mg/kg, i.g.) 1 h before intravenous injection of Dox (2.5 mg/kg), once every 3 days, six times in total. Hearts were collected for histochemical analysis and western blot detection 8 weeks after the last administration. Ticagrelor was shown to significantly improve cardiac function by inhibiting GSK-3ß/caspase-1/GSDMD activation. In vitro experiments were conducted using rat cardiac myocytes (RCMs) and rat embryonic cardiac-derived H9c2 cells. Pretreatment with ticagrelor (10 µm) significantly inhibited Dox (1 µm)-induced hypertrophy and reversed the upregulation of GSDMD-NT expression. We showed that ticagrelor suppressed the activation of Akt caused by Dox in the heart tissue as well as in RCMs/H9c2 cells caused by Dox. When GSK-3ß expression was absent in H9c2 cells, the inhibitory effect of ticagrelor on Dox-induced caspase-1/GSDMD activation was weakened. These data showed that ticagrelor reduced Dox-induced pyroptosis in rat cardiomyocytes by targeting GSK-3ß/caspase-1.

15.
Front Pharmacol ; 12: 662726, 2021.
Article in English | MEDLINE | ID: mdl-34349643

ABSTRACT

The aim of this study was to investigate the effects of the GSK-3ß/NF-κB pathway on integrin-associated protein (CD47) expression after myocardial infarction (MI) in rats. An MI Sprague Dawley rat model was established by ligating the left anterior descending coronary artery. The rats were divided into three groups: Sham, MI, and SB + MI (SB216763) groups. Immunohistochemistry was used to observe the changes in cardiac morphology. A significant reduction in the sizes of fibrotic scars was observed in the SB + MI group compared to that in the MI group. SB216763 decreased the mRNA and protein expression of CD47 and NF-κB during MI. Primary rat cardiomyocytes (RCMs) and the H9c2 cell line were used to establish in vitro hypoxia models. Quantitative real-time PCR and western blotting analyses were conducted to detect mRNA and protein expression levels of CD47 and NF-κB and apoptosis-related proteins, respectively. Apoptosis of hypoxic cells was assessed using flow cytometry. SB216763 reduced the protein expression of CD47 and NF-κB in RCMs and H9c2 cells under hypoxic conditions for 12 h, and alleviated hypoxia-induced apoptosis. SN50 (an NF-κB inhibitor) also decreased CD47 protein expression in RCMs and H9c2 cells under hypoxic conditions for 12 h and protected cells from apoptosis. GSK-3ß upregulates CD47 expression in cardiac tissues after MI by activating NF-κB, which in turn leads to myocardial cell damage and apoptosis.

16.
Drug Metab Dispos ; 49(5): 361-368, 2021 05.
Article in English | MEDLINE | ID: mdl-33674270

ABSTRACT

The maintenance of homeostasis of cytochromes P450 enzymes (P450s) under both physiologic and xenobiotic exposure conditions is ensured by the action of positive and negative regulators. In the current study, the hepatocyte nuclear factor 4α (HNF4A) antisense RNA 1 (HNF4A-AS1), an antisense long noncoding RNA of HNF4A, was found to be a negative regulator of the basal and rifampicin (RIF)-induced expression of nuclear receptors and downstream P450s. In Huh7 cells, knockdown of HNF4A-AS1 resulted in elevated expression of HNF4A, pregnane X receptor (PXR), and P450s (including CYP3A4) under both basal and RIF-induced conditions. Conversely, overexpression of HNF4A-AS1 led to decreased basal expression of constitutive androstane receptor, aryl hydrocarbon receptor, PXR, and all studied P450s. Of note, significantly diminished induction levels of PXR and CYP1A2, 2C8, 2C19, and 3A4 by RIF were also observed in HNF4A-AS1 plasmid-transfected Huh7 cells. Moreover, the negative feedback of HNF4A on HNF4A-AS1-mediated gene expression was validated using a loss-of-function experiment in this study. Strikingly, our data showed that increased enrichment levels of histone 3 lysine 4 trimethylation and HNF4A in the CYP3A4 promoter contribute to the elevated CYP3A4 expression after HNF4A-AS1 knockdown. Overall, the current study reveals that histone modifications contribute to the negative regulation of nuclear receptors and P450s by HNF4A-AS1 in basal and drug-induced levels. SIGNIFICANCE STATEMENT: Utilizing loss-of-function and gain-of-function experiments, the current study systematically investigated the negative regulation of HNF4A-AS1 on the expression of nuclear receptors (including HNF4A, constitutive androstane receptor, aryl hydrocarbon receptor, and pregnane X receptor) and P450s (including CYP1A2, 2E1, 2B6, 2D6, 2C8, 2C9, 2C19, and 3A4) in both basal and rifampicin-induced levels in Huh7 cells. Notably, this study is the first to reveal the contribution of histone modification to the HNF4A-AS1-mediated expression of CYP3A4 in Huh7 cells.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Histones/metabolism , RNA, Antisense/metabolism , Antibiotics, Antitubercular/metabolism , Antibiotics, Antitubercular/pharmacology , Cell Line , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hepatocyte Nuclear Factor 4/genetics , Histones/genetics , Humans , RNA, Antisense/genetics , Rifampin/metabolism , Rifampin/pharmacology
17.
Biomed Pharmacother ; 137: 111376, 2021 May.
Article in English | MEDLINE | ID: mdl-33588266

ABSTRACT

Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, especially in developing countries. To date, several approaches have been proposed for the prevention and treatment of CVDs. However, the increased risk of developing cardiovascular events that result in hospitalization has become a growing public health concern. The pathogenesis of CVDs has been analyzed from various perspectives. Recent data suggest that regulatory RNAs play a multidimensional role in the development of CVDs. Studies have identified several mRNA modifications that have contributed to the functional characterization of various cardiac diseases. RNA methylation, such as N6-methyladenosine, N1-methyladenosine, 5-methylcytosine, N7-methylguanosine, N4-acetylcytidine, and 2'-O-methylation are novel epigenetic modifications that affect the regulation of cell growth, immunity, DNA damage, calcium signaling, apoptosis, and aging in cardiomyocytes. In this review, we summarize the role of RNA methylation in the pathophysiology of CVDs and the potential of using epigenetics to treat such disorders.


Subject(s)
Cardiovascular Diseases/genetics , Epigenesis, Genetic/genetics , RNA/genetics , RNA/metabolism , Animals , Cardiovascular Diseases/pathology , Cardiovascular Diseases/therapy , Humans , Methylation , Protein Processing, Post-Translational
18.
J Mol Cell Cardiol ; 149: 82-94, 2020 12.
Article in English | MEDLINE | ID: mdl-32991876

ABSTRACT

Inflammasome-promoted sterile inflammation following cardiac damage is critically implicated in heart dysfunction after myocardial infarction (MI). Glycogen synthase kinase-3 (GSK-3ß) is a prominent mediator of the inflammatory response, and high GSK-3 activity is associated with various heart diseases. We investigated the regulatory mechanisms of GSK-3ß in activation of the nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in a rat model with successful induction of MI on days 2-28. An in vitro investigation was performed using newborn rat/human cardiomyocytes and fibroblast cultures under typical inflammasome stimulation and hypoxia treatment. GSK-3ß inhibition markedly improved myocardial dysfunction and prevented remodeling, with parallel reduction in the parameters of NLRP3 inflammasome activation after MI. GSK-3ß inhibition reduced NLRP3 inflammasome activation in cardiac fibroblasts, but not in cardiomyocytes. GSK-3ß's interaction with activating signal cointegrator (ASC) as well as GSK-3ß inhibition reduced ASC phosphorylation and oligomerization at the tissues and cellular levels. Taken together, these data show that GSK-3ß directly mediates NLRP3 inflammasome activation, causing cardiac dysfunction in MI.


Subject(s)
Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Inflammasomes/metabolism , Myocardial Infarction/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Animals , CARD Signaling Adaptor Proteins/metabolism , Enzyme Activation/drug effects , Fibroblasts/drug effects , Fibroblasts/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Indoles/pharmacology , Inflammation/pathology , Male , Maleimides/pharmacology , Myocardial Infarction/physiopathology , Myocardial Ischemia/enzymology , Myocardial Ischemia/pathology , Myocardial Ischemia/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Multimerization/drug effects , Rats, Sprague-Dawley , Vascular Remodeling/drug effects
19.
Oncol Rep ; 43(4): 1113-1124, 2020 04.
Article in English | MEDLINE | ID: mdl-32323780

ABSTRACT

Inflammasomes can identify endogenous danger signals as an inflammatory immune response. As the most common inflammasome, the NLR pyrin family domain containing 3 (NLRP3) inflammasome is associated with the pathogenesis of different tumors. However, the function of the NLRP3 inflammasome in esophageal cancer (EC) has rarely been reported. Herein, the expression levels of the components of NLRP3 inflammasome and Ki­67 were analyzed by immunohistochemistry. Furthermore, correlations between the NLRP3 inflammasome and Ki­67 along with the clinicopathological features of EC patients were evaluated. The components of the NLRP3 inflammasome were also assessed by western blot analysis and quantitative PCR. NLRP3 was silenced or overexpressed in different esophageal squamous cell carcinoma (ESCC) cell lines, and cell viability, migration and invasion were assessed by CCK­8 and Transwell assays. The present results showed that high NLRP3 expression in the tumor specimens was significantly associated with TNM stage and T category. Spearman's correlation analysis revealed a positive correlation between NLRP3 and the Ki­67 proliferation index. The mRNA and protein levels of NLRP3, apoptosis­associated speck­like protein containing a CARD (ASC), cleaved caspase­1, and interleukin (IL)­1ß in tumor tissues were higher than those in non­cancerous tissues. The level of secreted IL­1ß in tumor tissues was also increased, as compared to that in normal tissues. Silencing of NLRP3 in KYSE­70 and TE13 cells strongly attenuated cell viability, decreased cell mobility in wound­healing assays and greatly diminished the ability of cell migration and invasion in the Transwell system. Overexpression of NLRP3 in KYSE­510 and EC9706 cells markedly promoted the proliferation, migration and invasion. Collectively, these results revealed that the the NLRP3 inflammasome is upregulated in human ESCC tissues and promotes ESCC progression. Hence, NLRP3 could be a promising new candidate diagnostic and prognostic target.


Subject(s)
Cell Movement , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Apoptosis , Caspase 1/metabolism , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Female , Humans , Interleukin-1beta/metabolism , Male , Middle Aged , Signal Transduction , Up-Regulation
20.
Aging (Albany NY) ; 12(3): 2530-2544, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32023551

ABSTRACT

Circular RNA (circRNA) is a novel class of noncoding RNAs, and the roles of circRNAs in the development of cardiac hypertrophy remain to be explored. Here, we investigate the potential roles of circRNAs in cardiac hypertrophy. By circRNA sequencing in left ventricular specimens collected from 8-week-old mice with isoproterenol hydrochloride-induced cardiac hypertrophy, we found 401 out of 3323 total circRNAs were dysregulated in the hypertrophic hearts compared with the controls. Of these, 303 circRNAs were upregulated and 98 were downregulated. Moreover, the GO and KEGG analyses revealed that the majority of parental gene of differentially expressed circRNAs were not only related to biological process such as metabolic process and response to stimulus, but also related to pathway such as circulatory system and cardiovascular diseases. On the other hand, total 1974 miRNAs were predicted to binding to these differentially expressed circRNAs, and the possible target mRNAs of those miRNAs were also predicted and analyzed in terms of functional annotation. Finally, we identified that ANF and miR-23a are downstream targets of circRNA wwp1, suggesting that circRNA wwp1 exerts inhibitory roles of cardiac hypertrophy via down-regulation of ANF and miR-23a, which underlying the potential mechanisms whereby circRNA regulates cardiac hypertrophy.


Subject(s)
Cardiomegaly/chemically induced , Cardiomegaly/genetics , Gene Expression Regulation/genetics , Isoproterenol/toxicity , RNA, Circular/metabolism , Animals , Atrial Natriuretic Factor/metabolism , Gene Expression Profiling , Gene Expression Regulation/drug effects , Mice , MicroRNAs/metabolism , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...