Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3892, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719816

ABSTRACT

As a sustainable alternative to fossil fuel-based manufacture of bulk oxygenates, electrochemical synthesis using CO and H2O as raw materials at ambient conditions offers immense appeal. However, the upscaling of the electrosynthesis of oxygenates encounters kinetic bottlenecks arising from the competing hydrogen evolution reaction with the selective production of ethylene. Herein, a catalytic relay system that can perform in tandem CO capture, activation, intermediate transfer and enrichment on a Cu-Ag composite catalyst is used for attaining high yield CO-to-oxygenates electrosynthesis at high current densities. The composite catalyst Cu/30Ag (molar ratio of Cu to Ag is 7:3) enables high efficiency CO-to-oxygenates conversion, attaining a maximum partial current density for oxygenates of 800 mA cm-2 at an applied current density of 1200 mA cm-2, and with 67 % selectivity. The ability to finely control the production of ethylene and oxygenates highlights the principle of efficient catalyst design based on the relay mechanism.

2.
J Am Chem Soc ; 146(19): 12976-12983, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38567925

ABSTRACT

Electrocatalytic reduction of nitrate to ammonia (NRA) has emerged as an alternative strategy for sewage treatment and ammonia generation. Despite excellent performances having been achieved over cobalt-based electrocatalysts, the reaction mechanism as well as veritable active species across a wide potential range are still full of controversy. Here, we adopt CoP, Co, and Co3O4 as model materials to solve these issues. CoP evolves into a core@shell structured CoP@Co before NRA. For CoP@Co and Co catalysts, a three-step relay mechanism is carried out over superficial dynamical Coδ+ active species under low overpotential, while a continuous hydrogenation mechanism from nitrate to ammonia is unveiled over superficial Co species under high overpotential. In comparison, Co3O4 species are stable and steadily catalyze nitrate hydrogenation to ammonia across a wide potential range. As a result, CoP@Co and Co exhibit much higher NRA activity than Co3O4 especially under a low overpotential. Moreover, the NRA performance of CoP@Co is higher than Co although they experience the same reaction mechanism. A series of characterizations clarify the reason for performance enhancement highlighting that CoP core donates abundant electrons to superficial active species, leading to the generation of more active hydrogen for the reduction of nitrogen-containing intermediates.

3.
Nat Commun ; 14(1): 7368, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963900

ABSTRACT

Electrocatalytic nitrate (NO3-) reduction to ammonia (NRA) has emerged as an alternative strategy for effluent treatment and ammonia production. Despite significant advancements that have been achieved in this field, the efficient conversion of low-concentration nitrate to ammonia at low overpotential remains a formidable challenge. This challenge stems from the sluggish reaction kinetics caused by the limited distribution of negatively charged NO3- in the vicinity of the working electrode and the competing side reactions. Here, a pulsed potential approach is introduced to overcome these issues. A good NRA performance (Faradaic efficiency: 97.6%, yield rate: 2.7 mmol-1 h-1 mgRu-1, conversion rate: 96.4%) is achieved for low-concentration (≤10 mM) nitrate reduction, obviously exceeding the potentiostatic test (Faradaic efficiency: 65.8%, yield rate: 1.1 mmol-1 h-1 mgRu-1, conversion rate: 54.1%). The combined results of in situ characterizations and finite element analysis unveil the performance enhancement mechanism that the periodic appearance of anodic potential can significantly optimize the adsorption configuration of the key *NO intermediate and increase the local NO3- concentration. Furthermore, our research implies an effective approach for the rational design and precise manipulation of reaction processes, potentially extending its applicability to a broader range of catalytic applications.

4.
Adv Mater ; 35(32): e2304508, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37344386

ABSTRACT

Environmentally friendly electrochemical reduction of contaminated nitrate to ammonia (NO3 - RR) is a promising solution for large quantity ammonia (NH3 ) production, which, however, is a complex multi-reaction process involving coordination between different reaction intermediates of nitrate reduction and water decomposition-provided active hydrogen (Hads ) species. Here, a dual-site catalyst of [W-O] group-doped CoP nanosheets (0.6W-O-CoP@NF) has been designed to synergistically catalyze the NO3 - RR and water decomposition, especially the reactions between the intermediates of NO3 - RR and water decomposition-provided Hads species. This catalytic NO3 - RR exhibits an extremely high NH3 yield of 80.92 mg h-1 cm-2 and a Faradaic efficiency (FE) of 95.2% in 1 m KOH containing 0.1 m NO3 - . Significantly, 0.6W-O-CoP@NF presents greatly enhanced NH3 yield and FE in a wide NO3 - concentration ranges of 0.001-0.1 m compared to the reported. The excellent NO3 - RR performance is attributed to a synergistic catalytic effect between [W-O] and CoP active sites, in which the doped [W-O] group promotes the water decomposition to supply abundant Hads , and meanwhile modulates the electronic structure of Co for strengthened adsorption of Hads and the hydrogen (H2 ) release prevention, resultantly facilitating the NO3 - RR. Finally, a Zn-NO3 - battery has been assembled to simultaneously achieve three functions: electricity output, ammonia production, and nitrate treatment in wastewater.

5.
Angew Chem Int Ed Engl ; 62(27): e202305184, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37129145

ABSTRACT

Hydroxylamine (NH2 OH), a vital industrial feedstock, is presently synthesized under harsh conditions with serious environmental and energy concerns. Electrocatalytic nitric oxide (NO) reduction is attractive for the production of hydroxylamine under ambient conditions. However, hydroxylamine selectivity is limited by the competitive reaction of ammonia production. Herein, we regulate the adsorption configuration of NO by adjusting the atomic structure of catalysts to control the product selectivity. Co single-atom catalysts show state-of-the-art NH2 OH selectivity from NO electroreduction under neutral conditions (FE NH 2 OH ${{_{{\rm NH}{_{2}}{\rm OH}}}}$ : 81.3 %), while Co nanoparticles are inclined to generate ammonia (FE NH 3 ${{_{{\rm NH}{_{3}}}}}$ : 92.3 %). A series of in situ characterizations and theoretical simulations unveil that linear adsorption of NO on isolated Co sites enables hydroxylamine formation and bridge adsorption of NO on adjacent Co sites induces the production of ammonia.

6.
Angew Chem Int Ed Engl ; 62(19): e202217411, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912527

ABSTRACT

As a potential substitute technique for conventional nitrate production, electrocatalytic nitrogen oxidation reaction (NOR) is gaining more and more attention. But, the pathway of this reaction is still unknown owing to the lack of understanding on key reaction intermediates. Herein, electrochemical in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and isotope-labeled online differential electrochemical mass spectrometry (DEMS) are employed to study the NOR mechanism over a Rh catalyst. Based on the detected asymmetric NO2 - bending, NO3 - vibration, N=O stretching, and N-N stretching as well as isotope-labeled mass signals of N2 O and NO, it can be deduced that the NOR undergoes an associative mechanism (distal approach) and the strong N≡N bond in N2 prefers to break concurrently with the hydroxyl addition in distal N.

7.
Comput Intell Neurosci ; 2022: 1926794, 2022.
Article in English | MEDLINE | ID: mdl-35800694

ABSTRACT

The rapid iteration of information technology makes the development of online social networks increasingly rapid, and its corresponding network scale is also increasingly large and complex. The corresponding algorithms to deal with social networks and their corresponding related problems are also increasing. The corresponding privacy protection algorithms such as encryption algorithm, access control strategy algorithm, and differential privacy protection algorithm have been studied and analyzed, but these algorithms do not completely solve the problem of privacy disclosure. Based on this, this article first searches and accurately filters the relevant information and content of online social networks based on the deep convolution neural network algorithm, so as to realize the perception and protection of users' safe content. For the corresponding graphics and data, this article introduces the compressed sensing technology to randomly disturb the corresponding graphics and data. At the level of tracking network information leakage algorithm, this article proposes a network information leakage-tracking algorithm based on digital fingerprint, which mainly uses relevant plug-ins to realize the unique identification processing of users, uses the uniqueness of digital fingerprint to realize the tracking processing of leakers, and formulates the corresponding coding scheme based on the social network topology, and at the same time, the network information leakage-tracking algorithm proposed in this article also has high efficiency in the corresponding digital coding efficiency and scalability. In order to verify the advantages of the online social network information leakage-tracking algorithm based on deep learning, this article compares it with the traditional algorithm. In the experimental part, this article mainly compares the accuracy index, recall index, and performance index. At the corresponding accuracy index level, it can be seen that the maximum improvement of the algorithm proposed in this article is about 10% compared with the traditional algorithm. At the corresponding recall index level, the proposed algorithm is about 5-8% higher than the traditional algorithm. Corresponding to the overall performance index, it improves the performance by about 50% compared with the traditional algorithm. The comparison results show that the proposed algorithm has higher accuracy and the corresponding source tracking is more accurate.


Subject(s)
Deep Learning , Algorithms , Neural Networks, Computer , Privacy , Social Networking
8.
J Am Chem Soc ; 144(35): 16006-16011, 2022 09 07.
Article in English | MEDLINE | ID: mdl-35905476

ABSTRACT

Formic acid (HCOOH) can be exclusively prepared through CO2 electroreduction at an industrial current density (0.5 A cm-2). However, the global annual demand for formic acid is only ∼1 million tons, far less than the current CO2 emission scale. The exploration of an economical and green approach to upgrading CO2-derived formic acid is significant. Here, we report an electrochemical process to convert formic acid and nitrite into high-valued formamide over a copper catalyst under ambient conditions, which offers the selectivity from formic acid to formamide up to 90.0%. Isotope-labeled in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy and quasi in situ electron paramagnetic resonance results reveal the key C-N bond formation through coupling *CHO and *NH2 intermediates. This work offers an electrochemical strategy to upgrade CO2-derived formic acid into high-value formamide.


Subject(s)
Carbon Dioxide , Nitrites , Carbon Dioxide/chemistry , Formamides , Formates/chemistry
9.
Angew Chem Int Ed Engl ; 61(26): e202204541, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35441770

ABSTRACT

The electrocatalytic nitrogen oxidation reaction (NOR) to generate nitrate is gaining increasing attention as an alternative approach to the conventional industrial manufacture. But, current progress in NOR is limited by the difficulties in activation and conversion of the strong N≡N bond (941 kJ mol-1 ). Herein, we designed to utilize sulfate to enhance NOR performance over an Rh electrocatalyst. After the addition of sulfate, the inert Rh nanoparticles exhibited superior NOR performance with a nitrate yield of 168.0 µmol gcat -1 h-1 . The 15 N isotope-labeling experiment confirmed the produced nitrate from nitrogen electrooxidation. A series of electrochemical in situ characterizations and theoretical calculation unveiled that sulfate promoted nitrogen adsorption and decreased the reaction energy barrier, and in situ formed sulfate radicals reduced the activation energy of the potential-determining step, thus accelerating NOR.

10.
Angew Chem Int Ed Engl ; 60(39): 21464-21472, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34322983

ABSTRACT

Electrocatalytic hydrogen production under acidic conditions is of great importance for industrialization in comparison to that in alkaline media, which, unfortunately, still remains challenging due to the lack of earth-abundant, cost-effective and highly active anodic electrocatalysts that can be used durably under strongly acidic conditions. Here we report an unexpected finding that manganese oxide, a kind of common non-noble catalysts easily soluble in acidic solutions, can be applied as a highly efficient and extremely durable anodic electrocatalyst for hydrogen production from an acidic aqueous solution of alcohols. Particularly in a glycerol solution, a potential of as low as 1.36 V (vs. RHE) is needed at 10 mA cm-2 , which is 270 mV lower than that of oxygen evolution reaction (OER), to oxidize glycerol into value-added chemicals such as formic acid, without oxygen production. To our surprise, the manganese oxide exhibits extremely high stability for electrocatalytic hydrogen production in coupling with glycerol oxidation for longer than 865 hours compared to shorter than 10 h for OER. Moreover, the effect of the addition of glycerol on the electrochemical durability has been probed via in situ Raman spectroscopic analysis and density functional theory (DFT) calculations. This work demonstrates that acid-unstable metal oxide electrocatalysts can be used robustly in acidic media under the presence of certain substances for electrochemical purposes, such as hydrogen production.

11.
Angew Chem Int Ed Engl ; 60(9): 4474-4478, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33124137

ABSTRACT

Nitrate is one of the essential raw ingredients in agriculture and industry. The electrochemical nitrogen oxidation reaction (NOR) is promising to replace the conventional nitrate synthesis industry with high energy consumption and greenhouse gas emission. Here, tensile-strained palladium porous nanosheets (Pd-s PNSs) were prepared. They exhibited enhanced activity for electrochemical NOR at ambient conditions, greatly outperforming Pd nanosheets. 15 N isotope labeling experiments proved that nitrate originated from nitrogen oxidation. Combining electrochemical in situ Raman and FTIR spectroscopy with density functional calculations, it was revealed that the tensile strain could facilitate the formation of NOR active species of PdO2 , leading to high activity.

12.
ACS Appl Mater Interfaces ; 9(20): 17195-17200, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28471161

ABSTRACT

Inspired by graphene, ultrathin two-dimensional nanomaterials with atomic thickness have attracted more and more attention because of their unique physicochemical properties and electronic structure. In this work, the atomically thick ultrathin Rh2O3 nanosheet nanoassemblies (Rh2O3-NSNSs) were obtained by oxidizing the atomically thick ultrathin Rh nanosheet nanoassemblies with HClO. For the first time, Rh-based nanostructures were used as the oxygen evolution reaction (OER) electrocatalyst in an alkaline medium. Surprisingly, the as-prepared Rh2O3-NSNSs displayed extremely improved catalytic activity and durability for the OER compared with those of the commercial Ir/C catalyst and most recently reported Ir-based electrocatalysts. The result indicated Rh-based nanostructures that have great promise to become a potential candidate for efficient OER electrocatalyst because of the similarity of Rh and Ir prices. These experimental results demonstrated the reasonable morphological control of Rh2O3 nanostructures could significantly improve their catalytic activity and durability during heterogeneous catalysis.

13.
ACS Appl Mater Interfaces ; 8(45): 30948-30955, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27778503

ABSTRACT

Noble metal nanostructures (NMNSs) play a crucial role in many heterogeneous catalytic reactions. Hollow and porous NMNSs possess generally prominent advantages over their solid counterparts due to their unordinary structural features. In this work, we describe a facial one-pot synthesis of hollow and porous Pd-Cu alloy nanospheres (Pd-Cu HPANSs) through a polyethylenimine (PEI)-assisted oxidation-dissolution mechanism. The strong coordination interaction between CuII and PEI facilitates the oxidation-dissolution of the Cu2O nanospheres template under air conditions, which is responsible for the generation of the Pd-Cu alloy and the convenient removal of the Cu2O nanospheres template at room temperature. Compared to the commercial Pd black, the Pd-Cu HPANSs show remarkably improved catalytic activity for the reduction of K2Cr2O7 by HCOOH at room temperature, attributing to the enhanced catalytic activity of the Pd-Cu HPANSs for the dehydrogenation decomposition of HCOOH.

SELECTION OF CITATIONS
SEARCH DETAIL
...