Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 330
Filter
1.
J Cancer Res Clin Oncol ; 150(5): 261, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761291

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a significant health issue globally, ranking as the fifth most common cancer with over 10,000 new cases reported annually. Long non-coding RNA (lncRNA) has emerged as a critical player in cellular functions, influencing GC's development, growth, metastasis, and prognosis. However, our understanding of lncRNA's role in the pathogenesis of GC remains limited. Therefore, it is particularly important to explore the relationship between lncRNA and gastric cancer. METHODS: we conducted a comprehensive analysis of RNA sequencing data from the GEO database and stomach adenocarcinoma (STAD) data from the TCGA database to identify lncRNAs that exhibit altered expression levels in GC and the mechanisms underlying lncRNA-mediated transcription and post-transcriptional regulation were explored. RESULTS: This study uncovered 94 lncRNAs with differential expression and, through co-expression analysis, linked these to 1508 differentially expressed genes (DEGs). GO functional enrichment analysis highlighted that these DEGs are involved in critical pathways, such as cell adhesion and the positive regulation of cell migration. By establishing a lncRNA-miRNA-mRNA regulatory network, we found that the ceRNA mechanism, particularly involving RP11-357H14.17 and CTD-2377D24.4, could play a role in GC progression. Experimental validation of selected differentially expressed lncRNAs and mRNAs (including RP11-357H14.17-CLDN1, BBOX1, TRPM2-AS, CLDN1, PLAU, HOXB7) confirmed the RNA-seq results. CONCLUSIONS: Overall, our findings highlight the critical role of the lncRNA-mRNA regulatory network in the development and progression of GC, offering potential biomarkers for diagnosis and targets for innovative treatment strategies.


Subject(s)
Gene Expression Regulation, Neoplastic , RNA, Long Noncoding , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Genome-Wide Association Study , Gene Expression Profiling , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , RNA, Messenger/genetics , MicroRNAs/genetics
2.
Nat Protoc ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740909

ABSTRACT

A significant hurdle that has limited progress in microbiome science has been identifying and studying the diverse set of metabolites produced by gut microbes. Gut microbial metabolism produces thousands of difficult-to-identify metabolites, which present a challenge to study their roles in host biology. In recent years, mass spectrometry-based metabolomics has become one of the core technologies for identifying small metabolites. However, metabolomics expertise, ranging from sample preparation to instrument use and data analysis, is often lacking in academic labs. Most targeted metabolomics methods provide high levels of sensitivity and quantification, while they are limited to a panel of predefined molecules that may not be informative to microbiome-focused studies. Here we have developed a gut microbe-focused and wide-spectrum metabolomic protocol using liquid chromatography-mass spectrometry and bioinformatic analysis. This protocol enables users to carry out experiments from sample collection to data analysis, only requiring access to a liquid chromatography-mass spectrometry instrument, which is often available at local core facilities. By applying this protocol to samples containing human gut microbial metabolites, spanning from culture supernatant to human biospecimens, our approach enables high-confidence identification of >800 metabolites that can serve as candidate mediators of microbe-host interactions. We expect this protocol will lower the barrier to tracking gut bacterial metabolism in vitro and in mammalian hosts, propelling hypothesis-driven mechanistic studies and accelerating our understanding of the gut microbiome at the chemical level.

3.
Res Sq ; 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38699321

ABSTRACT

Introduction: The cerebellum is a common lesion site in persons with multiple sclerosis (PwMS). Physiologic and anatomic studies have identified a topographic organization of the cerebellum including functionally distinct motor and cognitive areas. This study implemented a recent parcellation algorithm developed by Han et al., 2020 to a sample of PwMS and healthy controls to examine relationships among specific cerebellar regions, fall status, and common clinical measures of motor and cognitive functions. Methods: Thirty-one PwMS and 29 age and sex-matched controls underwent an MRI scan and motor and cognitive testing. The parcellation algorithm was applied to all images and divided the cerebellum into 28 regions. Mann-Whitney U tests were used to compare cerebellar volumes among PwMS and controls, and MS fallers and MS non-fallers. Relationships between cerebellar volumes and motor and cognitive function was evaluated using Spearman correlations. Results: PwMS performed significantly worse on functional measures compared to controls. We found significant differences in volumetric measures between PwMS and controls in the corpus medullare, lobules I-III, and lobule V. Volumetric differences seen between PwMS and controls were primarily driven by the MS fallers. Finally, functional performance on motor and cognitive tasks was associated with cerebellar volumes. Conclusions: Using the parcellation tool, our results showed that volumes of motor and cognitive lobules impact both motor and cognitive performance, and that functional performance and cerebellar volumes distinguishes MS fallers from non-fallers. Future studies should explore the potential of cerebellar imaging to predict falls in PwMS.

4.
Am J Transl Res ; 16(4): 1145-1154, 2024.
Article in English | MEDLINE | ID: mdl-38715814

ABSTRACT

OBJECTIVE: To verify the results of three-dimensional fracture mapping of T12-L2 compression fractures by the finite element method from a biomechanical point of view, and to provide clinical reference. METHODS: This study is a retrospective study. By collecting 150 patients' computerized tomography (CT) data with thoracolumbar compression fractures (T12-L2) with AO type A. Mimics was used for three-dimensional (3D) reconstruction, and 3-Matic was used to mark fracture lines in stereo images. After standardized treatment, all fracture lines were drawn in the same 3D image, and finally fracture lines and fracture map were drawn. Constructing a 3D finite element model of thoracolumbar segment to verify the fracture thermogram results from the perspective of biomechanics. RESULTS: From the fracture map, fracture lines were mainly distributed in the upper part of the vertebral body, the leading edge of the anterior column (AC), and the lateral margin of the middle column (MC). In the finite element analysis, the stress mainly was concentrated on the edge of the anterior and middle column of the vertebral body and the upper part of the vertebral body, and the stress gradually decreased from the upper endplate to the endplate, and the stress was the least in the posterior column (PC) of the vertebral body. CONCLUSION: The results of finite element analysis further confirm the accuracy of fracture mapping and explain the distribution characteristics of fracture lines. This will provide theoretical support for the selection of clinical fracture treatment, intraoperative implants, and for a standard fracture model.

5.
Discov Oncol ; 15(1): 180, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776027

ABSTRACT

Worldwide, skin cancer prevalence necessitates accurate diagnosis to alleviate public health burdens. Although the application of artificial intelligence in image analysis and pattern recognition has improved the accuracy and efficiency of early skin cancer diagnosis, existing supervised learning methods are limited due to their reliance on a large amount of labeled data. To overcome the limitations of data labeling and enhance the performance of diagnostic models, this study proposes a semi-supervised skin cancer diagnostic model based on Self-feedback Threshold Focal Learning (STFL), capable of utilizing partial labeled and a large scale of unlabeled medical images for training models in unseen scenarios. The proposed model dynamically adjusts the selection threshold of unlabeled samples during training, effectively filtering reliable unlabeled samples and using focal learning to mitigate the impact of class imbalance in further training. The study is experimentally validated on the HAM10000 dataset, which includes images of various types of skin lesions, with experiments conducted across different scales of labeled samples. With just 500 annotated samples, the model demonstrates robust performance (0.77 accuracy, 0.6408 Kappa, 0.77 recall, 0.7426 precision, and 0.7462 F1-score), showcasing its efficiency with limited labeled data. Further, comprehensive testing validates the semi-supervised model's significant advancements in diagnostic accuracy and efficiency, underscoring the value of integrating unlabeled data. This model offers a new perspective on medical image processing and contributes robust scientific support for the early diagnosis and treatment of skin cancer.

6.
Environ Int ; 188: 108768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788416

ABSTRACT

Symbiotic microorganisms play critical ecophysiological roles that facilitate the maintenance of coral health. Currently, information on the gene and protein pathways contributing to bleaching responses is lacking, including the role of autoinducers. Although the autoinducer AI-1 is well understood, information on AI-2 is insufficient. Here, we observed a 3.7-4.0 times higher abundance of the AI-2 synthesis gene luxS in bleached individuals relative to their healthy counterparts among reef-building coral samples from the natural environment. Laboratory tests further revealed that AI-2 contributed significantly to an increase in coral bleaching, altered the ratio of potential probiotic and pathogenic bacteria, and suppressed the antiviral activity of specific pathogenic bacteria while enhancing their functional potential, such as energy metabolism, chemotaxis, biofilm formation and virulence release. Structural equation modeling indicated that AI-2 influences the microbial composition, network structure, and pathogenic features, which collectively contribute to the coral bleaching status. Collectively, our results offer novel potential strategies for coral conservation based on a signal manipulation approach.


Subject(s)
Anthozoa , Homeostasis , Quorum Sensing , Symbiosis , Anthozoa/microbiology , Anthozoa/physiology , Animals , Homoserine/analogs & derivatives , Homoserine/metabolism , Coral Reefs , Lactones/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics
8.
Phys Med Biol ; 69(10)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38604178

ABSTRACT

Objective.Cardiac computed tomography (CT) is widely used for diagnosis of cardiovascular disease, the leading cause of morbidity and mortality in the world. Diagnostic performance depends strongly on the temporal resolution of the CT images. To image the beating heart, one can reduce the scanning time by acquiring limited-angle projections. However, this leads to increased image noise and limited-angle-related artifacts. The goal of this paper is to reconstruct high quality cardiac CT images from limited-angle projections.Approach. The ability to reconstruct high quality images from limited-angle projections is highly desirable and remains a major challenge. With the development of deep learning networks, such as U-Net and transformer networks, progresses have been reached on image reconstruction and processing. Here we propose a hybrid model based on the U-Net and Swin-transformer (U-Swin) networks. The U-Net has the potential to restore structural information due to missing projection data and related artifacts, then the Swin-transformer can gather a detailed global feature distribution.Main results. Using synthetic XCAT and clinical cardiac COCA datasets, we demonstrate that our proposed method outperforms the state-of-the-art deep learning-based methods.Significance. It has a great potential to freeze the beating heart with a higher temporal resolution.


Subject(s)
Heart , Image Processing, Computer-Assisted , Tomography, X-Ray Computed , Image Processing, Computer-Assisted/methods , Heart/diagnostic imaging , Humans , Deep Learning
9.
Food Microbiol ; 120: 104482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431313

ABSTRACT

Hafnia paralvei, a Gram-negative foodborne pathogen, is found ubiquitously in various aquatic animals and seafoods, which can form biofilm as a dominant virulence factor that contributes to its pathogenesis. However, the biofilm formation mechanism of H. paralvei and its effect on food spoilage has not been fully characterized. Here we show that biofilm formation, is regulated by c-di-GMP which mediated by bcsB, can increase the spoilage ability of H. paralvei. We found that GTP was added exogenously to enhance the synthesis of c-di-GMP, which further promoted biofilm formation. The gene dgcC, one of 11 genes encoding GGDEF domain-containing proteins in H. paralvei, was significantly upregulated with GTP as substrate. The upregulation of dgcC contributes to a significant increase of c-di-GMP and the formation of biofilm. In addition, the overexpression of dgcC induced upregulation of bcsB, a reported effector protein encoding gene, which was further demonstrated that overexpression of bcsB can encourage the synthesis of bacterial cellulose and biofilm formation. The effect of biofilm formation induced by c-di-GMP on spoilage of Yellow River carp (Cyprinus carpio) was evaluated by sensory evaluation, the total viable count, and the total volatile basic nitrogen, which showed that biofilm formation can significantly increase the spoilage ability of H. paralvei on C. carpio. Our findings provide the regulation of c-di-GMP on expression of bcsB, that can contribute to biofilm formation and spoilage ability of H. paralvei, which is favor to understanding the pathogenesis of Hafnia paralvei and its role in food spoilage.


Subject(s)
Bacterial Proteins , Carps , Cyclic GMP/analogs & derivatives , Hafnia , Animals , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Gene Expression , Seafood , Biofilms , Guanosine Triphosphate
10.
Front Pharmacol ; 15: 1324848, 2024.
Article in English | MEDLINE | ID: mdl-38549674

ABSTRACT

Background: Prophylactic antibacterial drugs are used for patients with liver cirrhosis and upper gastrointestinal bleeding, and independent studies have concluded that they can decrease the rate of infection, mortality, and rebleeding in these diseases. However, no comprehensive assessment of this effect has been reported in recent years and available data pertaining to the prognostic implications of diverse categories of antibiotic prophylaxis in individuals afflicted with cirrhosis are notably limited. The objective of this article is to assess the clinical effectiveness of prophylactic antibacterial drugs for patients with liver cirrhosis and upper gastrointestinal bleeding. Methods: Relevant randomized controlled studies and cohort studies which examined the value of prophylactic antibacterial drugs for patients with liver cirrhosis and upper gastrointestinal bleeding were retrieved via Cochrane Library, EMBASE, MedLine, and Web of Science. The search period was from database inception until 30 April 2023. Summing up the relevant data, the dichotomous variable was statistically analysed using the relative risk (RR) value and its 95% confidence interval (CI) and the continuous variable using the mean difference (MD) value and its 95% CI. All analyses were performed using Revman 5.4 software. The study has been registered on the PROSPERO website under registration number CRD42022343352. Results: Twenty-six studies (18 RCTs and 8 cohort studies, including 13,670 participants) were included to evaluate the effect of antibacterial prophylaxis versus no antibacterial prophylaxis or placebo. Prophylactic antibiotics reduced mortality rates (RR 0.66, 95% CI 0.51-0.83), infection rates (RR 0.41, 95% CI 0.35-0.49), rebleeding rates (RR 0.42, 95% CI 0.31-0.56), and length of hospital stay (MD -5.29, 95% CI -7.53, -3.04). Subgroup analysis revealed that the prophylactic administration of quinolone antimicrobials demonstrated the most favorable efficacy, followed by cephalosporins. Both interventions were effective in averting infections frequently observed in patients with liver cirrhosis and upper gastrointestinal bleeding. Conclusion: Based on our investigation, the prophylactic antibacterial drugs confers noteworthy advantages in patients afflicted by liver cirrhosis with upper gastrointestinal bleeding. It has been associated with reductions in mortality, infection incidence, rebleeding occurrences, and the duration of hospitalization. Among prophylactic antibacterial options, quinolones emerged as the foremost choice, with cephalosporins ranking closely thereafter. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022343352, identifier CRD42022343352.

11.
J Hazard Mater ; 469: 133976, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38461664

ABSTRACT

The premise that pathogen colonized microplastics (MPs) can promote the spread of pathogens has been widely recognized, however, their role in the colonization of pathogens in a host intestine has not been fully elucidated. Here, we investigated the effect of polystyrene MPs (PS-MPs) on the colonization levels of Aeromonas veronii, a typical aquatic pathogen, in the loach (Misgurnus anguillicaudatus) intestine. Multiple types of MPs were observed to promote the intestinal colonization of A. veronii, among which PS-MPs exhibited the most significant stimulating effect (67.18% increase in A. veronii colonization). PS-MPs inflicted serious damage to the intestinal tracts of loaches and induced intestinal microbiota dysbiosis. The abundance of certain intestinal bacteria with resistance against A. veronii colonization decreased, with Lactococcus sp. showing the strongest colonization resistance (73.64% decline in A. veronii colonization). Fecal microbiota transplantation was performed, which revealed that PS-MPs induced intestinal microbiota dysbiosis was responsible for the increased colonization of A. veronii in the intestine. It was determined that PS-MPs reshaped the intestinal microbiota community to attenuate the colonization resistance against A. veronii colonization, resulting in an elevated intestinal colonization levels of A. veronii.


Subject(s)
Gastrointestinal Microbiome , Microplastics , Humans , Microplastics/toxicity , Polystyrenes/toxicity , Plastics , Aeromonas veronii , Dysbiosis/chemically induced , Intestines
12.
Eur J Pharmacol ; 969: 176394, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38331342

ABSTRACT

TSPO, translocator protein (18 kDa) ligands have demonstrated consistent antidepression and anxiolytic effects in several preclinical studies. This study aimed to examine whether YL-IPA08[N-ethyl-N-(2-pyridinylmethyl)-2-(3,4-ichlorophenyl) -7-methylimidazo [1,2-a] pyridine-3-acetamide hydrochloride], a potent and selective TSPO ligand synthesized by our institute, could alleviate anxiety-related behaviors induced by electric shock (ES) and investigate its underlying mechanism. As expected, we showed that chronic treatment with YL-IPA08 significantly reversed anxiety-related behaviors induced by electrical stimulation (0.5 mA, 12 times, duration 1s, interval 10s) exposure. Using the analysis of RNA-sequencing (RNA-seq) technology, it was found that the differential genes associated with the anxiolytic effect of YL-IPA08 were mainly related to synaptic plasticity. Furthermore, YL-IPA08 restored the decreased levels of brain-derived neurotrophic factor (BDNF), synapse-related protein (e.g. synapsin-1 and post-synaptic density95, PSD95), and the number of doublecortin (DCX) + neurons in the hippocampus of post-ES mice. In addition, YL-IPA08 also enhanced the dendritic complexity and dendritic spine density of hippocampal dentate gyrus (DG) granule neurons. Meanwhile, the induction of long-term potentiation (LTP) was significantly enhanced by YL-IPA08. In summary, the findings from the current study showed that YL-IPA08 exerted a clear anxiolytic effect, which might be partially mediated by promoting hippocampal neuroplasticity.


Subject(s)
Anti-Anxiety Agents , Imidazoles , Mice , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Ligands , Hippocampus , Pyridines/pharmacology , Neuronal Plasticity
13.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38301328

ABSTRACT

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Subject(s)
Zingiber officinale , Zingiber officinale/genetics , Phylogeny , Photosynthesis , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Int J Biol Macromol ; 263(Pt 2): 130441, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38417760

ABSTRACT

Carbohydrates are exported by the SWEET family of transporters, which is a novel class of carriers that can transport sugars across cell membranes and facilitate sugar's long-distance transport from source to sink organs in plants. SWEETs play crucial roles in a wide range of physiologically important processes by regulating apoplastic and symplastic sugar concentrations. These processes include host-pathogen interactions, abiotic stress responses, and plant growth and development. In the present review, we (i) describe the structure and organization of SWEETs in the cell membrane, (ii) discuss the roles of SWEETs in sugar loading and unloading processes, (iii) identify the distinct functions of SWEETs in regulating plant growth and development including flower, fruit, and seed development, (iv) shed light on the importance of SWEETs in modulating abiotic stress resistance, and (v) describe the role of SWEET genes during plant-pathogen interaction. Finally, several perspectives regarding future investigations for improving the understanding of sugar-mediated plant defenses are proposed.


Subject(s)
Plant Proteins , Plants , Plant Proteins/chemistry , Plants/genetics , Plants/metabolism , Membrane Transport Proteins/genetics , Carbohydrates , Sugars/metabolism , Gene Expression Regulation, Plant , Phylogeny
15.
Sci Rep ; 14(1): 5046, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38424258

ABSTRACT

In response to the escalating demand for real-time and accurate fault detection in power transmission lines, this paper undertook an optimization of the existing YOLOv4 network. This involved the substitution of the main feature extraction network within the original YOLOv4 model with a lighter EfficientNet network. Additionally, the inclusion of Grouped Convolution modules in the feature pyramid structure replaced conventional convolution operations. The resulting model not only reduced model parameters but also effectively ensured detection accuracy. Moreover, in enhancing the model's reliability, data augmentation techniques were employed to bolster the robustness of the power transmission line fault detection algorithm. This optimization further utilized the DIoU loss function to stabilize target box regression. Comparative experiments demonstrated the improved YOLOv4 model's superior performance in terms of loss function optimization while significantly enhancing detection speed under equivalent configurations. The parameter capacity was reduced by 81%, totaling merely 43.65 million, while the frame rate surged by 85% to achieve 24 frames per second. These experimental findings validate the effectiveness of the algorithm.

16.
Avian Pathol ; : 1-13, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38323582

ABSTRACT

RESEARCH HIGHLIGHTS: Differentially expressed lncRNAs in spleens of chickens infected with Marek's disease virus at different stages were identified for the first time.The effects of novel lncRNA 803 on p53 pathway and apoptosis of DF-1 cells were reported for the first time.

17.
ACS Appl Mater Interfaces ; 16(8): 10867-10876, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38381066

ABSTRACT

Twisted bilayer graphene (TBG) is a prototypical layered material whose properties are strongly correlated to interlayer coupling. The two stacked graphene layers with distinct orientations are investigated to generate peculiar optical and electronic phenomena. Thus, the rapid, reliable, and nondestructive twist angle identification technique is of essential importance. Here, we integrated the white light reflection spectra (WLRS), the Raman spectroscopy, and the transmission electron microscope (TEM) to propose a facile RGB optical imaging technique that identified the twist angle of the TBG in a large area intuitively with high efficiency. The RGB technique established a robust correlation between the interlayer rotation angle and the contrast difference in the RGB color channels of a standard optical image. The angle-resolved optical behavior is attributed to the absorption resonance matching with the separation of van Hove singularities in the density of states of the TBG. Our study thus developed a route to identify the rotation angle of stacked bilayer graphene by means of a straightforward optical method, which can be further applied in other stacked van der Waals layered materials.

18.
World Neurosurg ; 185: e415-e420, 2024 May.
Article in English | MEDLINE | ID: mdl-38360206

ABSTRACT

OBJECTIVE: This study compared the clinical therapeutic efficacy of syringo-subarachnoid shunt placement with direct tube and T-tube via the dorsal root entry zone (DREZ) approach for treatment of eccentric syringomyelia. METHODS: A retrospective study was performed of 41 patients with idiopathic or secondary eccentric syringomyelia from November 2011 to December 2022. Syringo-subarachnoid shunt placement with direct tube or T-tube via the DREZ approach was performed. The modified Japanese Orthopaedic Association low back pain scale was used to investigate the severity of clinical symptoms. Magnetic resonance imaging was used to investigate therapeutic efficacy(reduction of the cavity volume by >10% was considered an improvement and 50% was considered a significant improvement). RESULTS: Incision length of the spinal cortex in the direct tube group was shorter than in the T-tube group (3.10 ± 0.28 cm vs. 5.03 ± 0.19 cm), with a significant difference between the 2 groups (t = -52.56, P < 0.001). Modified Japanese Orthopaedic Association score 3 months postoperatively was significantly better than the preoperative score in both the direct tube group(t = 40.954, P < 0.001) and the T-tube group(t = 24.769, P < 0.001). Statistical comparison revealed there was no difference in imaging improvement between the direct tube group and T-tube group 3 months (χ2 = 0.20, P = 0.655) and 12 months (χ2 = 0.21, P = 0.647) postoperatively. CONCLUSIONS: Syringo-subarachnoid shunt placement with direct tube via the DREZ approach for treatment of eccentric syringomyelia is safer than with T-tube via the DREZ approach due to smaller incision length and less of a space-occupying effect with same therapeutic efficacy.


Subject(s)
Cerebrospinal Fluid Shunts , Syringomyelia , Humans , Syringomyelia/surgery , Syringomyelia/diagnostic imaging , Female , Male , Retrospective Studies , Middle Aged , Adult , Cerebrospinal Fluid Shunts/methods , Treatment Outcome , Spinal Nerve Roots/surgery , Spinal Nerve Roots/diagnostic imaging , Subarachnoid Space/surgery , Subarachnoid Space/diagnostic imaging , Aged , Magnetic Resonance Imaging
19.
Plant Commun ; 5(2): 100791, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38168637

ABSTRACT

The domestication of Brassica oleracea has resulted in diverse morphological types with distinct patterns of organ development. Here we report a graph-based pan-genome of B. oleracea constructed from high-quality genome assemblies of different morphotypes. The pan-genome harbors over 200 structural variant hotspot regions enriched in auxin- and flowering-related genes. Population genomic analyses revealed that early domestication of B. oleracea focused on leaf or stem development. Gene flows resulting from agricultural practices and variety improvement were detected among different morphotypes. Selective-sweep and pan-genome analyses identified an auxin-responsive small auxin up-regulated RNA gene and a CLAVATA3/ESR-RELATED family gene as crucial players in leaf-stem differentiation during the early stage of B. oleracea domestication and the BoKAN1 gene as instrumental in shaping the leafy heads of cabbage and Brussels sprouts. Our pan-genome and functional analyses further revealed that variations in the BoFLC2 gene play key roles in the divergence of vernalization and flowering characteristics among different morphotypes, and variations in the first intron of BoFLC3 are involved in fine-tuning the flowering process in cauliflower. This study provides a comprehensive understanding of the pan-genome of B. oleracea and sheds light on the domestication and differential organ development of this globally important crop species.


Subject(s)
Brassica , Domestication , Brassica/genetics , Genomics , Genome, Plant/genetics , Indoleacetic Acids
20.
J Hazard Mater ; 466: 133582, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38280328

ABSTRACT

Hydrogen peroxide is widely used to remedy bacterial and parasitic infections, but its excessive use will cause severe damage to aquatic animals. Moreover, there is no safe, efficient and low-cost method to degrade residual hydrogen peroxide in water. Here we developed a hydrogen peroxide removal mechanism by which autoinducer-2 (AI-2), a quorum sensing signal molecule that can promote the hydrogen peroxide degradation by Gram-positive bacteria. Here, we investigated the promotion effect of AI-2 on hydrogen peroxide degradation by Deinococcus sp. Y35 and the response of the antioxidant system. We further sought to understand the key mechanism underlying the promotion effect of AI-2 on hydrogen peroxide degradation is that, AI-2 contributed to the resistance of strain Y35 to oxidative stress induced by hydrogen peroxide, and altered membrane permeability of strain Y35 that allowed more hydrogen peroxide to enter bacterial cells and be degraded. Additionally, AI-2 can also encourage multiple Gram-positive bacteria to degrade hydrogen peroxide. Accordingly, our study serves as a reference for the regulation mechanism of the signal molecule AI-2 and provides the development of new strategies for hydrogen peroxide degradation.


Subject(s)
Homoserine/analogs & derivatives , Hydrogen Peroxide , Quorum Sensing , Animals , Hydrogen Peroxide/pharmacology , Water , Lactones/metabolism , Gram-Positive Bacteria , Bacterial Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...