Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Trace Elem Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720017

ABSTRACT

Metals are recognized as important factors related to breast cancer (BC) risk. Homologous recombination repair (HRR) genes might modify the toxicity of metals by influencing the distribution and metabolism of metal compounds. This study aims to investigate the modification effects of single nucleotide polymorphisms (SNPs) in HRR genes on the associations between urinary metals and BC risk. A total of 685 BC cases and 741 controls were recruited from October 2009 to December 2012. Twenty-one metals were analyzed in urine samples using inductively coupled plasma mass spectrometry (ICP-MS), and three SNPs (LIG3 rs1052536, RFC1 rs6829064, and RAD54L rs17102086) were genotyped. We identified significant interactions between four metals and two SNPs on the risk of BC. For LIG3 rs1052536 C/T variant, participants with CT/TT genotypes exposed to higher cobalt (Co) levels had higher BC risk compared to those with CC genotype (Pinteraction = 0.048). For RAD54L rs17102086 T/C variant, participants with TT genotype who were exposed to higher levels of zinc (Zn), Co, arsenic (As), and strontium (Sr) had more pronounced BC risk than the CC/TC genotypes (all Pinteraction < 0.05). This study showed compelling evidence for the interaction between genetic variants within the HRR system and urinary metals on BC risk. Our findings highlight the need to consider genetic makeup when evaluating the carcinogenic or protective potential of metals.

2.
Genes (Basel) ; 12(11)2021 11 11.
Article in English | MEDLINE | ID: mdl-34828393

ABSTRACT

Growing evidence has demonstrated the emerging role of long non-coding RNA as competitive endogenous RNA (ceRNA) in regulating skeletal muscle development. However, the mechanism of ceRNA regulated by lncRNA in pigeon skeletal muscle development remains unclear. To reveal the function and regulatory mechanisms of lncRNA, we first analyzed the expression profiles of lncRNA, microRNA (miRNA), and mRNA during the development of pigeon skeletal muscle using high-throughput sequencing. We then constructed a lncRNA-miRNA-mRNA ceRNA network based on differentially expressed (DE) lncRNAs, miRNAs, and mRNAs according to the ceRNA hypothesis. Functional enrichment and short time-series expression miner (STEM) analysis were performed to explore the function of the ceRNA network. Hub lncRNA-miRNA-mRNA interactions were identified by connectivity degree and validated using dual-luciferase activity assay. The results showed that a total of 1625 DE lncRNAs, 11,311 DE mRNAs, and 573 DE miRNAs were identified. A ceRNA network containing 9120 lncRNA-miRNA-mRNA interactions was constructed. STEM analysis indicated that the function of the lncRNA-associated ceRNA network might be developmental specific. Functional enrichment analysis identified potential pathways regulating pigeon skeletal muscle development, such as cell cycle and MAPK signaling. Based on the connectivity degree, lncRNAs TCONS_00066712, TCONS_00026594, TCONS_00001557, TCONS_00001553, and TCONS_00003307 were identified as hub genes in the ceRNA network. lncRNA TCONS_00026594 might regulate the FSHD region gene 1 (FRG1)/ SRC proto-oncogene, non-receptor tyrosine kinase (SRC) by sponge adsorption of cli-miR-1a-3p to affect the development of pigeon skeletal muscle. Our findings provide a data basis for in-depth elucidation of the lncRNA-associated ceRNA mechanism underlying pigeon skeletal muscle development.


Subject(s)
Columbidae/genetics , MicroRNAs/genetics , Muscle Development/genetics , Muscle, Skeletal/metabolism , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Columbidae/embryology , Columbidae/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , MicroRNAs/metabolism , Muscle, Skeletal/embryology , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Transcriptome
3.
Sci Rep ; 5: 10185, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25985413

ABSTRACT

The independent dietary shift from carnivore to herbivore with over 90% being bamboo in the giant and the red pandas is of great interests to biologists. Although previous studies have shown convergent evolution of the giant and the red pandas at both morphological and molecular level, the evolution of the gut microbiota in these pandas remains largely unknown. The goal of this study was to determine whether the gut microbiota of the pandas converged due to the same diet, or diverged. We characterized the fecal microbiota from these two species by pyrosequencing the 16S V1-V3 hypervariable regions using the 454 GS FLX Titanium platform. We also included fecal samples from Asian black bears, a species phylogenetically closer to the giant panda, in our analyses. By analyzing the microbiota from these 3 species and those from other carnivores reported previously, we found the gut microbiotas of the giant pandas are distinct from those of the red pandas and clustered closer to those of the black bears. Our data suggests the divergent evolution of the gut microbiota in the pandas.


Subject(s)
Biological Evolution , Carnivora , Gastrointestinal Microbiome , Ursidae , Animals , Bacteria/classification , Bacteria/genetics , Metagenome
4.
Sci Rep ; 5: 9342, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25791609

ABSTRACT

Rex rabbit is an important small herbivore for fur and meat production. However, little is known about the gut microbiota in rex rabbit, especially regarding their relationship with different fecal types and growth of the hosts. We characterized the microbiota of both hard and soft feces from rex rabbits with high and low body weight by using the Illumina MiSeq platform targeting the V4 region of the 16S rDNA. High weight rex rabbits possess distinctive microbiota in hard feces, but not in soft feces, from the low weight group. We detected the overrepresentation of several genera such as YS2/Cyanobacteria, and Bacteroidales and underrepresentation of genera such as Anaeroplasma spp. and Clostridiaceae in high weight hard feces. Between fecal types, several bacterial taxa such as Ruminococcaceae, and Akkermansia spp. were enriched in soft feces. PICRUSt analysis revealed that metabolic pathways such as "stilbenoid, diarylheptanoid, gingerol biosynthesis" were enriched in high weight rabbits, and pathways related to "xenobiotics biodegradation" and "various types of N-glycan biosynthesis" were overrepresented in rabbit soft feces. Our study provides foundation to generate hypothesis aiming to test the roles that different bacterial taxa play in the growth and caecotrophy of rex rabbits.


Subject(s)
Bacteria/isolation & purification , Body Weight , Feces/microbiology , Animals , Bacteria/classification , Rabbits , Species Specificity
5.
PLoS One ; 9(2): e87885, 2014.
Article in English | MEDLINE | ID: mdl-24498390

ABSTRACT

The red panda is the only living species of the genus Ailurus. Like giant pandas, red pandas are also highly specialized to feed mainly on highly fibrous bamboo. Although several studies have focused on the gut microbiota in the giant panda, little is known about the gut microbiota of the red panda. In this study, we characterized the fecal microbiota from both wild (n = 16) and captive (n = 6) red pandas using a pyrosequecing based approach targeting the V1-V3 hypervariable regions of the 16S rRNA gene. Distinct bacterial communities were observed between the two groups based on both membership and structure. Wild red pandas maintained significantly higher community diversity, richness and evenness than captive red pandas, the communities of which were skewed and dominated by taxa associated with Firmicutes. Phylogenetic analysis of the top 50 OTUs revealed that 10 of them were related to known cellulose degraders. To the best of our knowledge, this is the first study of the gut microbiota of the red panda. Our data suggest that, similar to the giant panda, the gut microbiota in the red panda might also play important roles in the digestion of bamboo.


Subject(s)
Ailuridae/microbiology , Feces/microbiology , Gastrointestinal Tract/microbiology , Metagenome , Microbiota/genetics , Ailuridae/genetics , Animals , Cellulose/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...