Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
J Med Food ; 26(8): 595-604, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37594560

ABSTRACT

Acorn (Quercus acutissima CARR.) has been used in traditional food and medicinal ethnopharmacology in Asia, and it has shown multifarious functions such as antidementia, antiobesity, and antiasthma functions. However, there is limited scientific evidence about the efficacy of acorn for ameliorating skin problems. Treatment with ethanol-extracted acorns (EeA's) ablated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX2), monocyte chemoattractant protein-1 (MCP-1), and interleukin (IL)-8 stimulated by tumor necrosis factor (TNF)-α in human adult low calcium high temperature (HaCaT) cells under sublethal dosages. In addition, treatment with EeA dose dependently inhibited the ex vivo hyper keratin formation induced by TNF-α in HaCaT cells in conjunction with the blockade of cytokeratin-1 (CK-1) and cytokeratin-5 (CK-5) expression. Moreover, EeA treatment stimulated the expression of hyaluronic acid (HA) expression in human fibroblasts in a dose-dependent manner. Linoleamide was identified as the functional component of EeA using preparative high-performance liquid chromatography and ultra high performance liquid chromatography-mass spectrometry-mass spectrometry analysis, and the anti-inflammatory features and enhanced HA expression were verified. Collectively, these results suggest the efficacy of EeA supplementation in improving skin problems via anti-inflammation and upregulating HA production.


Subject(s)
Hyaluronic Acid , Quercus , Adult , Humans , Keratinocytes , HaCaT Cells , Ethanol
2.
IEEE Trans Biomed Circuits Syst ; 17(1): 21-32, 2023 02.
Article in English | MEDLINE | ID: mdl-37015136

ABSTRACT

Microfluidic lab-on-a-chip systems can offer cost- and time-efficient biological assays by providing high-throughput analysis at very small volume scale. Among these extremely broad ranges of assays, accurate and specific cell and reagent control is considered one of the most important functions. Dielectrophoretic (DEP)-based manipulation technologies have been extensively developed for these purposes due to their label-free and high selectivity natures as well as due to their simple microstructures. Here, we provide a tutorial on how to develop DEP-based microfluidic systems, including a detailed walkthrough of dielectrophoresis theory, instruction on how to conduct simulation and calculation of electric field and generated DEP force, followed with guidance on microfabricating two forms of DEP microfluidic systems, namely lateral DEP and droplet DEP, and how best to conduct experiments in such systems. Finally, we summarize most recent DEP-based microfluidic technologies and applications, including systems for blood diagnoses, pathogenicity studies, in-droplet content manipulations, droplet manipulations and merging, to name a few. We conclude by suggesting possible future directions on how DEP-based technologies can be utilized to overcome current challenges and improve the current status in microfluidic lab-on-a-chip systems.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidic Analytical Techniques/methods , Electrophoresis/methods , Equipment Design , Lab-On-A-Chip Devices
3.
ACS Appl Mater Interfaces ; 15(9): 11391-11402, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36847552

ABSTRACT

Discovery of microorganisms and their relevant surface peptides that specifically bind to target materials of interest can be achieved through iterative biopanning-based screening of cellular libraries having high diversity. Recently, microfluidics-based biopanning methods have been developed and exploited to overcome the limitations of conventional methods where controlling the shear stress applied to remove cells that do not bind or only weakly bind to target surfaces is difficult and the overall experimental procedure is labor-intensive. Despite the advantages of such microfluidic methods and successful demonstration of their utility, these methods still require several rounds of iterative biopanning. In this work, a magnetophoretic microfluidic biopanning platform was developed to isolate microorganisms that bind to target materials of interest, which is gold in this case. To achieve this, gold-coated magnetic nanobeads, which only attached to microorganisms that exhibit high affinity to gold, were used. The platform was first utilized to screen a bacterial peptide display library, where only the cells with surface peptides that specifically bind to gold could be isolated by the high-gradient magnetic field generated within the microchannel, resulting in enrichment and isolation of many isolates with high affinity and high specificity toward gold even after only a single round of separation. The amino acid profile of the resulting isolates was analyzed to provide a better understanding of the distinctive attributes of peptides that contribute to their specific material-binding capabilities. Next, the microfluidic system was utilized to screen soil microbes, a rich source of extremely diverse microorganisms, successfully isolating many naturally occurring microorganisms that show strong and specific binding to gold. The results show that the developed microfluidic platform is a powerful screening tool for identifying microorganisms that specifically bind to a target material surface of interest, which can greatly accelerate the development of new peptide-driven biological materials and hybrid organic-inorganic materials.


Subject(s)
Microfluidics , Peptide Library , Microfluidics/methods , Peptides/chemistry , Magnetics , Gold
4.
Nat Commun ; 13(1): 7326, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443315

ABSTRACT

Intrinsically disordered proteins rich in cationic amino acid groups can undergo Liquid-Liquid Phase Separation (LLPS) in the presence of charge-balancing anionic counterparts. Arginine and Lysine are the two most prevalent cationic amino acids in proteins that undergo LLPS, with arginine-rich proteins observed to undergo LLPS more readily than lysine-rich proteins, a feature commonly attributed to arginine's ability to form stronger cation-π interactions with aromatic groups. Here, we show that arginine's ability to promote LLPS is independent of the presence of aromatic partners, and that arginine-rich peptides, but not lysine-rich peptides, display re-entrant phase behavior at high salt concentrations. We further demonstrate that the hydrophobicity of arginine is the determining factor giving rise to the reentrant phase behavior and tunable viscoelastic properties of the dense LLPS phase. Controlling arginine-induced reentrant LLPS behavior using temperature and salt concentration opens avenues for the bioengineering of stress-triggered biological phenomena and drug delivery systems.


Subject(s)
Arginine , Intrinsically Disordered Proteins , Lysine , Amino Acids , Sodium Chloride , Hydrophobic and Hydrophilic Interactions
5.
Anticancer Res ; 42(8): 3789-3798, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35896263

ABSTRACT

BACKGROUND/AIM: Cholangiocarcinoma remains one of the most dangerous types of cancer. Eriodictyol is a well-known flavonoid having effective bioactivity against various malignant tumor types. However, the anticancer effect of eriodictyol against cholangiocarcinoma remains ambiguous. Thus, the aim of the present study was to investigate the effects of eriodictyol on human cholangiocarcinoma. MATERIALS AND METHODS: The biological effects of eriodictyol were validated by viability assay, colony formation and western blot analysis. The significance of heme oxygenase 1 (HMOX1) expression in cholangio-carcinoma was demonstrated using bioinformatics analysis and knockdown of HMOX1 by transfection with short interfering (si)-RNA. RESULTS: Eriodictyol highly reduced the in vitro viability of SNU-308, SNU-478, SNU-1079, and SNU-1196 cholangiocarcinoma cells compared with that of 293T cells, in a dose-dependent manner. The anticancer effect of eriodictyol was achieved by caspase-3-mediated apoptosis. In particular, eriodictyol increased HMOX1 expression, which resulted in attenuation of cholangiocarcinoma cell proliferation. In contrast, ablating HMOX1 expression by si-RNA transfection against HMOX1 made cholangiocarcinoma cells insensitive to the antiproliferative effect of eriodictyol treatment. CONCLUSION: These results collectively indicate that eriodictyol acts as an anticancer agent via regulation of HMOX1 expression against human cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Bile Duct Neoplasms/drug therapy , Bile Duct Neoplasms/genetics , Bile Ducts, Intrahepatic/metabolism , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/genetics , Flavanones , Heme Oxygenase-1/genetics , Humans , RNA, Small Interfering/genetics
6.
Biomed Microdevices ; 24(2): 23, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35771277

ABSTRACT

Dielectric properties of a cell are biophysical properties of high interest for various applications. However, measuring these properties accurately is not easy, which can be exemplified by the large variations in reported dielectric properties of the same cell types. This paper presents a method for measuring the dielectric properties of cells at high frequency, especially lipid-producing microalgae, at single-cell resolution, by integrating an electrorotation-based dielectric property measurement method with a negative dielectrophoretic (nDEP) force-based single-cell trapping method into a single device. In this method, a four-electrode nDEP structure was used to trap a single cell in an elevated position in the center of another four-electrode structure that can apply electrorotational force. By measuring the speed of cell rotation under different applied electrorotation frequencies and fitting the results into a theoretical core-shell cell model, the dielectric properties of cells, including membrane capacitance and cytoplasm conductivity, could be obtained. This system was applied to measure the dielectric properties of lipid-accumulating microalga Chlamydomonas reinhardtii strain Sta6 by applying an electrorotation signal of up to 100 MHz. By utilizing a broad frequency range and expanding the measurement spectra to a high frequency region, increased accuracy in fitting the dielectric parameters to a theoretical model was possible, especially the cytoplasm conductivity. The developed method can be used in various applications, such as screening microalgae based on their lipid production capabilities, separating cells of different dielectric properties, identifying different cell types, as well as conducting basic biophysical analyses of cellular properties.


Subject(s)
Lipids , Electric Capacitance , Electric Conductivity , Electrodes , Rotation
7.
ACS Appl Mater Interfaces ; 14(11): 13801-13811, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35261228

ABSTRACT

The ultrathin nanocomposite coatings made of zirconium oxide (ZrO2), zinc oxide (ZnO), and titanium oxide (TiO2) on stainless steel (SS) were prepared by the radio frequency sputtering method, and the effects of the nanocomposite coating on corrosion protection and antibacterial activities of nanocomposite coated SS were investigated. Scanning electron microscopy was conducted to observe surface morphology of nanocomposite coatings with distinct distribution of grains with the formation on SS substrate. From the electrochemical impedance spectroscopy results, ZrO2/ZnO/TiO2 nanocomposite coating showed excellent corrosion protection performance at 37 °C during immersion in simulated body fluid and saliva solution for 12 and 4 weeks, respectively. The impedance of ZrO2/ZnO/TiO2 (40/10/50) nanocomposite coated SS exhibited values about 5 orders of magnitude higher than that of uncoated SS with polarization at the low-frequency region. Cell viability of ZrO2/ZnO/TiO2 nanocomposite coated SS was examined under mouse fibroblasts culture (L929), and it was observed that the nanocomposite coating improves proliferation through effective cellular attachment compared to uncoated SS. From the antimicrobial activity results, ZrO2/ZnO/TiO2 nanocomposite-coated SS showed killing efficiency of 81.2% and 72.4% against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively.


Subject(s)
Nanocomposites , Zinc Oxide , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Corrosion , Materials Testing , Mice , Stainless Steel/chemistry , Titanium , Zinc Oxide/pharmacology
8.
Microsyst Nanoeng ; 7: 37, 2021.
Article in English | MEDLINE | ID: mdl-34567751

ABSTRACT

Analysis of growth and death kinetics at single-cell resolution is a key step in understanding the complexity of the nonreplicating growth phenotype of the bacterial pathogen Mycobacterium tuberculosis. Here, we developed a single-cell-resolution microfluidic mycobacterial culture device that allows time-lapse microscopy-based long-term phenotypic visualization of the live replication dynamics of mycobacteria. This technology was successfully applied to monitor the real-time growth dynamics of the fast-growing model strain Mycobacterium smegmatis (M. smegmatis) while subjected to drug treatment regimens during continuous culture for 48 h inside the microfluidic device. A clear morphological change leading to significant swelling at the poles of the bacterial membrane was observed during drug treatment. In addition, a small subpopulation of cells surviving treatment by frontline antibiotics was observed to recover and achieve robust replicative growth once regular culture media was provided, suggesting the possibility of identifying and isolating nonreplicative mycobacteria. This device is a simple, easy-to-use, and low-cost solution for studying the single-cell phenotype and growth dynamics of mycobacteria, especially during drug treatment.

9.
Anal Chem ; 93(24): 8622-8630, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34110770

ABSTRACT

Water-in-oil emulsion droplet microfluidic systems have been extensively developed, and currently, almost all cell handling steps can be conducted in this format. An exception is the cell washing and solution exchange step, which is commonly utilized in many conventional cell assays. This paper presents an in-droplet cell washing and solution exchange technology that utilizes dielectrophoretic (DEP) force to move all cells to one side of a droplet, followed by asymmetrical splitting of the droplet to obtain a small daughter droplet that contains all or most of the cells, and then finally merges this cell-concentrated droplet with a new droplet that contains the desired solution. These sequential droplet manipulation steps were integrated into a single platform, where up to 88% of the original solution in the droplet could be exchanged with the new solution while keeping cell loss to less than 5%. Two application examples were demonstrated using the developed technology. In the first example, green microalga Chlamydomonas reinhardtii cells were manipulated using negative DEP force to exchange the regular culture medium with a nitrogen-limited medium to induce lipid production. In the second example, Salmonella enterica cells were manipulated using positive DEP force to replace fluorescent dye that models fluorescent cell stains that contribute to high background noise in fluorescence-based droplet content detection with fresh buffer solution, significantly improving the droplet content detection sensitivity. Since the cell washing step is one of the most frequently utilized steps in many cell biology assays, we expect that the developed technology can significantly broaden the type of assay that can be conducted in droplet microfluidic format.


Subject(s)
Chlamydomonas reinhardtii , Microfluidic Analytical Techniques , Biological Assay , Emulsions , Microfluidics
10.
Anticancer Res ; 41(2): 747-756, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33517279

ABSTRACT

BACKGROUND/AIM: Lapathoside A, a phenylpropanoid ester, was isolated from the roots of buckwheat by searching for bioactive compounds against human pancreatic cancer cells. MATERIALS AND METHODS: Buckwheat root extracts, prepared by 70% ethanol, were separated into n-hexane, methylene chloride, ethyl acetate, n-butanol, and water fraction by solvent partitioning. Seven fractions were obtained from the ethyl acetate fraction by liquid chromatography, and fraction No. 6 contained lapathoside A. The effects of lapathoside A on Panc-1 and SNU-213 human pancreatic cancer cell lines were examined. RESULTS: The structure of lapathoside A was determined by liquid chromatography-mass spectrometry, liquid chromatography-tandem mass spectrometry, and nuclear magnetic resonance analysis. Next, we investigated whether lapathoside A has anticancer activity in human pancreatic cancer cell lines (PANC-1 and SNU-213). After treatment with 25 µM lapathoside A, viability of PANC-1 and SNU-213 cells decreased to about 40 and 27%, respectively. In addition, lapathoside A treatment also increased apoptosis while affecting the expression levels of apoptotic proteins. CONCLUSION: The effect of lapathoside A on apoptosis was confirmed in pancreatic cancer cell lines, supporting the application of lapathoside A in the treatment of pancreatic cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cinnamates/pharmacology , Fagopyrum , Pancreatic Neoplasms/drug therapy , Antineoplastic Agents, Phytogenic/isolation & purification , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cinnamates/isolation & purification , Fagopyrum/chemistry , Humans , Pancreatic Neoplasms/pathology , Signal Transduction
11.
Lab Chip ; 20(20): 3832-3841, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32926042

ABSTRACT

Precise manipulation of cells within water-in-oil emulsion droplets has the potential to vastly expand the type of cellular assays that can be conducted in droplet-based microfluidics systems. However, achieving such manipulation remains challenging. Here, we present an in-droplet label-free cell separation technology by utilizing different dielectrophoretic responses of two different cell types. Two pairs of angled planar electrodes were utilized to generate positive or negative dielectrophoretic force acting on each cell type, which results in selective in-droplet movement of only one specific cell type at a time. A downstream asymmetric Y-shaped microfluidic junction splits the mother droplet into two daughter droplets, each of which contains only one cell type. The capability of this platform was successfully demonstrated by conducting in-droplet separation from a mixture of Salmonella cells and macrophages, two cell types commonly used as a bacterial pathogenicity analysis model. This technology enable the precise manipulation of cells within droplets, which can be exploited as a critical function in implementing broader ranges of droplet-based microfluidics cellular assays.


Subject(s)
Bipolar Disorder , Cell Separation , Emulsions , Humans , Microfluidics , Water
12.
Angew Chem Int Ed Engl ; 59(32): 13260-13266, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32413202

ABSTRACT

Phosphorus-modified all-silica zeolites exhibit activity and selectivity in certain Brønsted acid catalyzed reactions for biomass conversion. In an effort to achieve similar performance with catalysts having well-defined sites, we report the incorporation of Brønsted acidity to metal-organic frameworks with the UiO-66 topology, achieved by attaching phosphonic acid to the 1,4-benzenedicarboxylate ligand and using it to form UiO-66-PO3 H2 by post-synthesis modification. Characterization reveals that UiO-66-PO3 H2 retains stability similar to UiO-66, and exhibits weak Brønsted acidity, as demonstrated by titrations, alcohol dehydration, and dehydra-decyclization of 2-methyltetrahydrofuran (2-MTHF). For the later reaction, the reported catalyst exhibits site-time yields and selectivity approaching that of phosphoric acid on all-silica zeolites. Using solid-state NMR and deprotonation energy calculations, the chemical environments of P and the corresponding acidities are determined.

13.
Anticancer Res ; 39(12): 6685-6691, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31810933

ABSTRACT

BACKGROUND/AIM: No effective therapeutics have yet been developed for pancreatic cancer. 2-Methoxy-4-vinyl phenol (2M4VP), a member of the class of phenols, has been demonstrated to have anti-inflammatory properties and cause cell cycle arrest making it an attractive candidate drug for the treatment of pancreatic cancer. MATERIALS AND METHODS: The effects of 2M4VP were examined in Panc-1 and SNU-213 human pancreatic cancer cells. RESULTS: 2M4VP had anticancer effects on pancreatic cancer cell lines, Panc-1 and SNU-213. 2M4VP reduced the viability of Panc-1 cells by inhibiting the expression of the cell nuclear antigen (PCNA) protein. 2M4VP also suppressed the migratory activity of both cell lines. In addition, treatment with 2M4VP effectively decreased the phosphorylation of Focal Adhesion Kinase (FAK) and AKT. CONCLUSION: 2M4VP might be used as a pancreatic cancer treatment supplement.


Subject(s)
Cell Movement/drug effects , Focal Adhesion Kinase 1/antagonists & inhibitors , Guaiacol/analogs & derivatives , Pancreatic Neoplasms/drug therapy , Proliferating Cell Nuclear Antigen/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Vinyl Compounds/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Focal Adhesion Kinase 1/metabolism , Guaiacol/pharmacology , Hepatocyte Growth Factor/metabolism , Humans , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
14.
Lab Chip ; 19(24): 4128-4138, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31755503

ABSTRACT

Microalgae are promising alternatives to petroleum as renewable biofuel sources, however not sufficiently economically competitive yet. Here, a label-free lateral dielectrophoresis-based microfluidic sorting platform that can digitally quantify and separate microalgae into six outlets based on the degree of their intracellular lipid content is presented. In this microfluidic system, the degree of cellular lateral displacement is inversely proportional to the intracellular lipid level, which was successfully demonstrated using Chlamydomonas reinhardtii cells. Using this functionality, a quick digital quantification of sub-populations that contain different intracellular lipid level in a given population was achieved. In addition, the degree of lateral displacement of microalgae could be readily controlled by simply changing the applied DEP voltage, where the level of gating in the intracellular lipid-based sorting decision could be easily adjusted. This allowed for selecting only a very small percentage of a given population that showed the highest degree of intracellular lipid content. In addition, this approach was utilized through an iterative selection process on natural and chemically mutated microalgal populations, successfully resulting in enrichment of high-lipid-accumulating microalgae. In summary, the developed platform can be exploited to quickly quantify microalgae lipid distribution in a given population in real-time and label-free, as well as to enrich a cell population with high-lipid-producing cells, or to select high-lipid-accumulating microalgal variants from a microalgal library.


Subject(s)
Chlamydomonas reinhardtii , Electrophoresis , Lab-On-A-Chip Devices , Lipids/biosynthesis , Microfluidic Analytical Techniques , Chlamydomonas reinhardtii/cytology , Chlamydomonas reinhardtii/metabolism , Electrophoresis/instrumentation , Electrophoresis/methods
15.
Biosens Bioelectron ; 97: 41-45, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28554044

ABSTRACT

Concentrating cells or adjusting the concentration of cells are one of the most fundamental steps in cell biology experiments, and are typically achieved through centrifugation. However this step is challenging to implement in droplet microfluidics. Here we present an in-droplet cell concentrator that operates by first gradually focusing cells inside a droplet to one side of the droplet using negative dielectrophoresis (nDEP), followed by asymmetric droplet splitting using a Y-shaped junction, resulting in two daughter droplets, one of which containing all or most of the cells. The developed platform was first characterized using droplets containing different number of polystyrene (PS) particles and by varying the applied voltages, flow rates, and the width ratios of the droplet splitting microchannels. Using this platform, the volume of one daughter droplet could be reduced up to 84% compared to that of the mother droplet, which resulted in the PS particle concentration to increase by 5.6-fold, with an average recovery rate of 90%. When testing with cells (Chlamydomonas reinhardtii), recovery rates as high as 98% could be achieved while increasing the cell concentration by 5-fold. This technology adds a new capability to droplet microfluidics operation, and can be used for adjusting concentrations of cells in droplets, exchanging solutions in which cells are suspended in droplets (including cell washing steps), and separating cells of different dielectric properties inside droplets, all of which are common steps in conventional cell assays but have been so far difficult to achieve in droplet format.


Subject(s)
Cell Separation/instrumentation , Electrophoresis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Cell Count , Chlamydomonas reinhardtii/cytology , Electrodes , Equipment Design , Polystyrenes/chemistry
16.
Plant Direct ; 1(3): e00011, 2017 Sep.
Article in English | MEDLINE | ID: mdl-31245660

ABSTRACT

Biofuels derived from microalgal lipids have demonstrated a promising potential as future renewable bioenergy. However, the production costs for microalgae-based biofuels are not economically competitive, and one strategy to overcome this limitation is to develop better-performing microalgal strains that have faster growth and higher lipid content through genetic screening and metabolic engineering. In this work, we present a high-throughput droplet microfluidics-based screening platform capable of analyzing growth and lipid content in populations derived from single cells of a randomly mutated microalgal library to identify and sort variants that exhibit the desired traits such as higher growth rate and increased lipid content. By encapsulating single cells into water-in-oil emulsion droplets, each variant was separately cultured inside an individual droplet that functioned as an independent bioreactor. In conjunction with an on-chip fluorescent lipid staining process within droplets, microalgal growth and lipid content were characterized by measuring chlorophyll and BODIPY fluorescence intensities through an integrated optical detection system in a flow-through manner. Droplets containing cells with higher growth and lipid content were selectively retrieved and further analyzed off-chip. The growth and lipid content screening capabilities of the developed platform were successfully demonstrated by first carrying out proof-of-concept screening using known Chlamydomonas reinhardtii mutants. The platform was then utilized to screen an ethyl methanesulfonate (EMS)-mutated C. reinhardtii population, where eight potential mutants showing faster growth and higher lipid content were selected from 200,000 examined samples, demonstrating the capability of the platform as a high-throughput screening tool for microalgal biofuel development.

17.
Biomed Microdevices ; 18(5): 91, 2016 10.
Article in English | MEDLINE | ID: mdl-27628059

ABSTRACT

CTCs are currently in the spotlight because provide comprehensive genetic information that enables monitoring of the evolution of cancer and selection of appropriate therapeutic strategies that cannot be obtained from a single-site tumor biopsy. Despite their importance, current techniques for isolating CTCs are limited in terms of their ability to yield high-quality CTCs from peripheral blood for use in profiling cancer genetic mutations by DNA sequencing technologies. This paper introduces a lateral magnetophoretic microseparator (the 'CTC-µChip') for isolating highly pure CTCs from blood, which facilitates the detection of somatic mutations in isolated CTCs. To isolate CTCs from peripheral blood, nucleated cells were first prepared by red blood cell lysis. Then, CTCs were isolated from nucleated cells within 30 min using the CTC-µChip. Analytical evaluation using 5 mL blood samples spiked with 5-50 MCF7 breast cancer cells demonstrated that the average recovery rate of the CTC-µChip was 99.08 %. The average number of residual white blood cells (WBCs) in isolated samples was 53, meaning that the WBC depletion rate is 472,000-fold (5.67 log), assuming that blood contains 5 × 10(6) WBCs per milliliter. The isolated MCF7 cells had a purity of 6.9 - 67.9 %, depending on the spiked MCF7 concentration. Using next-generation sequencing technology, heterozygous somatic mutations (PIK3CA and APC) of MCF7 cells were evaluated in the isolated samples. The results showed that somatic mutations could be detected in as few as two MCF7 cells per milliliter of blood, indicating that the CTC-µChip facilitates the detection of somatic variants in CTCs.


Subject(s)
DNA Mutational Analysis , Immunomagnetic Separation/instrumentation , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Breast Neoplasms/pathology , Humans , Leukocytes, Mononuclear/cytology , MCF-7 Cells , Staining and Labeling
18.
J Med Food ; 19(6): 569-77, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27266341

ABSTRACT

Citrus unshiu peel has been used empirically as a traditional medicine to improve bronchial asthma and blood circulation in northeast Asian nations, including Korea, Japan, and China. In this study, we report the proangiogenic effects of the aqueous extract of Citrus unshiu peel (AECUP). In human umbilical vein endothelial cells, AECUP significantly induced cellular migration and capillary tube formation. We also demonstrated that AECUP markedly increased the phosphorylation of FAK and ERK1/2 through the integrin signaling pathway. Additionally, we identified that narirutin and hesperidin were major constituents of AECUP and both showed proangiogenic effects, but at different levels. Collectively, these results suggest that the AECUP may have potential as a therapeutic agent for improving angiogenic functions with reduced harmful side effects.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Citrus/chemistry , Focal Adhesion Kinase 1/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , MAP Kinase Signaling System/drug effects , Plant Extracts/pharmacology , Disaccharides/chemistry , Disaccharides/pharmacology , Flavanones/chemistry , Flavanones/pharmacology , Fruit/chemistry , Hesperidin/chemistry , Hesperidin/pharmacology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Plant Extracts/chemistry , Signal Transduction/drug effects
19.
Anal Chem ; 88(9): 4857-63, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27093098

ABSTRACT

This paper introduces a single-cell isolation technology for circulating tumor cells (CTCs) using a microfluidic device (the "SIM-Chip"). The SIM-Chip comprises a lateral magnetophoretic microseparator and a microdispenser as a two-step cascade platform. First, CTCs were enriched from whole blood by the lateral magnetophoretic microseparator based on immunomagnetic nanobeads. Next, the enriched CTCs were electrically identified by single-cell impedance cytometer and isolated as single cells using the microshooter. Using 200 µL of whole blood spiked with 50 MCF7 breast cancer cells, the analysis demonstrated that the single-cell isolation efficiency of the SIM-Chip was 82.4%, and the purity of the isolated MCF7 cells with respect to WBCs was 92.45%. The data also showed that the WBC depletion rate of the SIM-Chip was 2.5 × 10(5) (5.4-log). The recovery rates were around 99.78% for spiked MCF7 cells ranging in number from 10 to 90. The isolated single MCF7 cells were intact and could be used for subsequent downstream genetic assays, such as RT-PCR. Single-cell culture evaluation of the proliferation of MCF7 cells isolated by the SIM-Chip showed that 84.1% of cells at least doubled in 5 days. Consequently, the SIM-Chip could be used for single-cell isolation of rare target cells from whole blood with high purity and recovery without cell damage.


Subject(s)
Cell Separation/methods , Microfluidic Analytical Techniques/methods , Neoplastic Cells, Circulating/pathology , Single-Cell Analysis , Cell Survival , Humans , MCF-7 Cells , Microfluidic Analytical Techniques/instrumentation , Single-Cell Analysis/instrumentation , Tumor Cells, Cultured
20.
Anal Chem ; 87(20): 10585-92, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26402053

ABSTRACT

This paper presents a microfluidic device for electrical discrimination of circulating tumor cells (CTCs) using graphene nanoplates (GNPs) as a highly conductive material bound to the cell surface. For two-step cascade discrimination, the microfluidic device is composed of a CTC-enrichment device and an impedance cytometry. Using lateral magnetophoresis, the CTC-enrichment device enriches rare CTCs from millions of background blood cells. Then, the impedance cytometry electrically identifies CTCs from the enriched sample, containing CTCs and persistent residual blood cells, based on the electrical impedance of CTCs modified by the GNPs. GNPs were used as a highly conductive material for modifying surface conductivity of CTCs, thereby improving the accuracy of electrical discrimination. The experimental results showed that a colorectal cancer cell line (DLD-1) spiked into peripheral blood was enriched by nearly 500-fold by the CTC-enrichment device. The phase of the electrical signal measured from DLD-1 cells covered by GNPs shifted by about 100° in comparison with that from normal blood cells, which allows the impedance cytometry to identify CTCs at a rate of 94% from the enriched samples.


Subject(s)
Cell Separation , Graphite/chemistry , Microfluidic Analytical Techniques , Nanocomposites/chemistry , Neoplastic Cells, Circulating/pathology , Cell Line, Tumor , Cell Separation/instrumentation , Electric Conductivity , Electrons , Humans , Microfluidic Analytical Techniques/instrumentation , Particle Size , Regression Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...