Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37374410

ABSTRACT

This study examines the impacts of copper and boron in parts per million (ppm) on the microstructure and mechanical properties of spheroidal graphite cast iron (SCI). Boron's inclusion increases the ferrite content whereas copper augments the stability of pearlite. The interaction between the two significantly influences the ferrite content. Differential scanning calorimetry (DSC) analysis indicates that boron alters the enthalpy change of the α + Fe3C → γ conversion and the α → γ conversion. Scanning electron microscope (SEM) analysis confirms the locations of copper and boron. Mechanical property assessments using a universal testing machine show that the inclusion of boron and copper decreases the tensile strength and yield strength of SCI, but simultaneously enhances elongation. Additionally, in SCI production, the utilization of copper-bearing scrap and trace amounts of boron-containing scrap metal, especially in the casting of ferritic nodular cast iron, offers potential for resource recycling. This highlights the importance of resource conservation and recycling in advancing sustainable manufacturing practices. These findings provide critical insights into the effects of boron and copper on SCI's behavior, contributing to the design and development of high-performance SCI materials.

2.
Materials (Basel) ; 16(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36837296

ABSTRACT

Additively manufactured austenitic stainless steel 316L is composed of a cellular structure, which has a directionality, and is observed with a different morphology depending on the observation direction. The cellular structure morphology that appears with a high probability in grains with a specific grain orientation is determined. Taylor factor, which is calculated by considering grain orientation, is related to cellular structure morphology due to the directional cellular structure in additively manufactured austenitic stainless steel 316L. The Taylor factor affects the mechanical properties. The yield strength of additively manufactured SUS316L can be explained by the correlation between cellular structure morphology, grain orientation, and Taylor factor.

SELECTION OF CITATIONS
SEARCH DETAIL
...