Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 203(9): 5405-5416, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34398307

ABSTRACT

Understanding the gut microbiota characteristics of endangered species such as the Eurasian otter (Lutra lutra), especially in their early stages of life, could be essential for improving their management and ex situ conservation strategies. Here, we analyzed the gut microbiota diversity, composition, and function of captive Eurasian otters at different ages using high-throughput 16S rRNA gene sequencing. We found that: (1) Clostridiaceae was abundant in all age stages; (2) Lactococcus in cubs is thought to predominate for digesting milk; (3) bacteria associated with amino acid metabolism increase with age, while bacteria associated with carbohydrate metabolism decrease with age, which is likely due to decrease in dietary carbohydrate content (e.g., milk) and increase in dietary protein contents (e.g., fishes) with age; and (4) fish-related bacteria were detected in feces of healthy adults and juveniles. Overall, the gut microbiota of captive Eurasian otters was taxonomically and functionally different by age, which is thought to be attributed to the difference in the diet in their life stages. This study provided baseline information regarding the gut microbiota of Eurasian otters for the first time and contributes to improvement in their management in captivity.


Subject(s)
Gastrointestinal Microbiome , Otters , Animals , Endangered Species , Feces , Humans , Otters/genetics , RNA, Ribosomal, 16S/genetics
2.
Anim Cells Syst (Seoul) ; 23(3): 228-234, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31231587

ABSTRACT

The Japanese otter (Lutra nippon), once inhabited in most islands of Japan, is now considered as an extinct species. Although the Japanese otter is regarded as a distinct species from the Eurasian otter (L. lutra), its phylogeny and taxonomic status are based on limited information on morphological and genetic data, and thus further clarification is required. Here, we assessed the phylogenetic relationship among the genus Lutra and taxonomic status of L. nippon by using the complete sequences of cytochrome b gene of its holotype. The present phylogenic trees supported that the genus Lutra specimens largely formed monophyletic group, with L. sumatrana as a basal to other Lutra species. Within Lutra species, L. nippon was distantly related with L. lutra. The European otter population of L. l. lutra were clustered together with its subspecies, L. l. chinensis rather than the same subspecies, Korean otter population. The discrepancy between the genetic data and traditional taxonomy justifies the necessity of reexamination of the current subspecific classification system of Eurasian otters. Level of genetic divergence between the holotype of L. nippon and L. lutra was two to three-fold lower than those among the other sister species of the Lutrinae. Based on the level of divergence between the L. nippon and L. lutra, and insufficient evidence of morphological difference between them, it is suggested that designation of Japanese otter as a separate species from L. lutra will be reconsidered.

3.
J Vet Med Sci ; 77(5): 571-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25715875

ABSTRACT

Although the sea otter (Enhydra lutris) is a complete aquatic species, spending its entire life in the ocean, it has been considered morphologically to be a semi-aquatic animal. This study aimed to clarify the unique hindlimb morphology and functional adaptations of E. lutris in comparison to other Mustelidae species. We compared muscle mass and bone measurements of five Mustelidae species: the sea otter, Eurasian river otter (Lutra lutra), American mink (Neovison vison), Japanese weasel (Mustela itatsi) and Siberian weasel (M. sibirica). In comparison with the other 4 species, E. lutris possessed significantly larger gluteus, popliteus and peroneus muscles, but smaller adductor and ischiopubic muscles. The popliteus muscle may act as a medial rotator of the crus, and the peroneus muscle may act as an abductor of the fifth toe and/or the pronator of the foot. The bundles of the gluteus superficialis muscle of E. lutris were fused with those of the tensor fasciae latae muscle and gluteofemoralis muscles, and they may play a role in femur abduction. These results suggest that E. lutris uses the abducted femur, medially rotated crus, eversion of the ankle and abducted fifth digit or extended interdigital web as a powerful propulsion generator. Therefore, we conclude that E. lutris is a complete aquatic animal, possessing differences in the proportions of the hindlimb muscles compared with those in other semi-aquatic and terrestrial mustelids.


Subject(s)
Adaptation, Physiological/physiology , Hindlimb/anatomy & histology , Muscle, Skeletal/anatomy & histology , Otters/anatomy & histology , Otters/physiology , Animals , Hindlimb/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...