Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 272(Pt 1): 132745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823734

ABSTRACT

Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.


Subject(s)
Drug Carriers , Neoplasms , Humans , Neoplasms/drug therapy , Neoplasms/therapy , Drug Carriers/chemistry , Animals , Drug Delivery Systems/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Administration, Cutaneous , Skin/metabolism , Nanoparticles/chemistry , Skin Absorption , Macromolecular Substances/chemistry
2.
ACS Nano ; 18(27): 17996-18010, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38924447

ABSTRACT

The low initial Coulombic efficiency (ICE) greatly hinders the practical application of MXenes in sodium-ion batteries. Herein, theoretical calculations confirm that -F and -OH terminations as well as the tetramethylammonium ion (TMA+) intercalator in sediment Ti3C2Tx (s-Ti3C2Tx) MXene possess strong interaction with Na+, which impedes Na+ desorption during the charging process and results in low ICE. Consequently, Na+-intercalated sediment Ti3C2Tx (Na-s-Ti3C2Tx) is constructed through Na2S·9H2O treatment of s-Ti3C2Tx. Specifically, Na+ can first exchange with TMA+ of s-Ti3C2Tx and then combine with -F and -OH terminations, thus leading to the elimination of TMA+ and preshielding of -F and -OH. As expected, the resulting Na-s-Ti3C2Tx anode delivers considerably boosted ICE values of around 71% in carbonate-based electrolytes relative to s-Ti3C2Tx. Furthermore, electrolyte optimization is employed to improve ICE, and the results demonstrate that an ultrahigh ICE value of 94.0% is obtained for Na-s-Ti3C2Tx in the NaPF6-diglyme electrolyte. More importantly, Na-s-Ti3C2Tx exhibits a lower Na+ migration barrier and higher electronic conductivity compared with s-Ti3C2Tx based on theoretical calculations. In addition, the cyclic stability and rate performance of the Na-s-Ti3C2Tx anode in various electrolytes are comprehensively explored. The presented simple strategy in boosting ICE significantly enhances the commercialization prospect of MXenes in advanced batteries.

3.
Small ; 20(27): e2307784, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38279620

ABSTRACT

Transition metal nitrides (TMNs) are affirmed to be an appealing candidate for boosting the performance of lithium-sulfur (Li-S) batteries due to their excellent conductivity, strong interaction with sulfur species, and the effective catalytic ability for conversion of polysulfides. However, the traditional bulk TMNs are difficult to achieve large active surface area and fast transport channels for electrons/ions simultaneously. Here, a 2D ultrathin geometry of titanium nitride (TiN) is realized by a facile topochemical conversion strategy, which can not only serve as an interconnected conductive platform but also expose abundant catalytic active sites. The ultrathin TiN nanosheets are coated on a commercial separator, serving as a multifunctional interlayer in Li-S batteries for hindering the polysulfide shuttle effect by strong capture and fast conversion of polysulfides, achieving a high initial capacity of 1357 mAh g-1 at 0.1 C and demonstrating a low capacity decay of only 0.046% per cycle over 1000 cycles at 1 C.

4.
Nanomicro Lett ; 16(1): 24, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985522

ABSTRACT

The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles, which have increasingly stringent energy density requirements. Lithium metal batteries (LMBs), with their ultralow reduction potential and high theoretical capacity, are widely regarded as the most promising technical pathway for achieving high energy density batteries. In this review, we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs. Furthermore, we propose improved strategies involving interface engineering, 3D current collector design, electrolyte optimization, separator modification, application of alloyed anodes, and external field regulation to address these challenges. The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them. This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes. Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface, leading to increased interface inhomogeneity-a critical factor contributing to failure in all-solid-state lithium metal batteries. Based on recent research works, this perspective highlights the current status of research on developing high-performance LMBs.

5.
ACS Appl Mater Interfaces ; 15(41): 48316-48325, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37793088

ABSTRACT

Zn metal has been extensively utilized as an anode in aqueous zinc-ion batteries attributed to its affordable cost and superior theoretical capacity. Nevertheless, the presence of dendrites and undesirable side reactions poses challenges to its widespread commercialization. To address these issues, herein, a surface coating composed of hydroxyapatite (HAP) was developed on the Zn anode to create an artificial solid electrolyte interphase. After the application of a hydroxyapatite layer, dendrites and corrosion of the Zn anode are sufficiently inhibited. Furthermore, the hydroxyapatite interphase with a low ionic diffusion barrier enables fast anodic redox kinetics. Consequently, the Zn@HAP symmetric cell possesses a durable lifespan over 2000 h at 1 mA cm-2, while maintaining minimal polarization. Moreover, the practical feasibilities of the Zn@HAP anode are also manifested in full batteries combined with MnO2 cathodes, exhibiting exceptional cycling performance up to 500 cycles at 1 A g-1 and excellent rate capability with a retention of 109 mAh g-1 at 5 A g-1.

6.
J Cosmet Dermatol ; 22(7): 1973-1979, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37036158

ABSTRACT

BACKGROUND: Compound glycyrrhizin has achieved outstanding results in the treatment of various skin diseases. However, the use of mesotherapy to inject compound glycyrrhizin into the skin to treat acne is still understudied. AIMS: This paper aims to explore the effects of mesotherapy introduction of compound glycyrrhizin injection on the acne. MATERIALS & METHODS: A total of 108 patients were included in this study and divided into the control group (n = 54) and the observation group (n = 54). The control group was treated with topical clindamycin gel, while the study group was treated with topical clindamycin gel + mesotherapy and compound glycyrrhizin injection. Skin transepidermal water loss (TEWL), cuticle water content, acne severity, adverse reactions, and inflammatory reactions were documented before and after treatment in the two groups. RESULTS: The usage of mesotherapy to inject compound glycyrrhizin into the skin of acne patients more effectively treat acne than traditional clindamycin gel. The mesotherapy compound glycyrrhizin can more effectively protect the skin barrier of patients and reduce the loss of skin moisture. Compared with the traditional clindamycin gel, the combination of mesotherapy and compound glycyrrhizin more effectively inhibit the inflammatory reaction in acne patients and reduce skin damage in acne patients. DISCUSSION/CONCLUSION: Mesoderm introduction of compound glycyrrhizin injection has better effects on the treatment of moderate to severe acne than clindamycin gel.


Subject(s)
Acne Vulgaris , Mesotherapy , Humans , Clindamycin/adverse effects , Anti-Bacterial Agents , Benzoyl Peroxide , Glycyrrhizic Acid/adverse effects , Mesotherapy/adverse effects , Drug Combinations , Acne Vulgaris/drug therapy , Gels , Treatment Outcome
7.
Small ; 19(35): e2301670, 2023 08.
Article in English | MEDLINE | ID: mdl-37098629

ABSTRACT

As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.


Subject(s)
Drug Delivery Systems , Polymers , Administration, Cutaneous , Drug Carriers , Alginates
8.
Nanomicro Lett ; 15(1): 68, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36918453

ABSTRACT

Since the discovery in 2011, MXenes have become the rising star in the field of two-dimensional materials. Benefiting from the metallic-level conductivity, large and adjustable gallery spacing, low ion diffusion barrier, rich surface chemistry, superior mechanical strength, MXenes exhibit great application prospects in energy storage and conversion, sensors, optoelectronics, electromagnetic interference shielding and biomedicine. Nevertheless, two issues seriously deteriorate the further development of MXenes. One is the high experimental risk of common preparation methods such as HF etching, and the other is the difficulty in obtaining MXenes with controllable surface groups. Recently, Lewis acidic etching, as a brand-new preparation strategy for MXenes, has attracted intensive attention due to its high safety and the ability to endow MXenes with uniform terminations. However, a comprehensive review of Lewis acidic etching method has not been reported yet. Herein, we first introduce the Lewis acidic etching from the following four aspects: etching mechanism, terminations regulation, in-situ formed metals and delamination of multi-layered MXenes. Further, the applications of MXenes and MXene-based hybrids obtained by Lewis acidic etching route in energy storage and conversion, sensors and microwave absorption are carefully summarized. Finally, some challenges and opportunities of Lewis acidic etching strategy are also presented.

9.
Chem Commun (Camb) ; 59(23): 3339-3359, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36815500

ABSTRACT

The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.


Subject(s)
Skin Absorption , Skin , Humans , Administration, Cutaneous , Drug Delivery Systems/methods , Iontophoresis/methods , Pharmaceutical Preparations/metabolism , Microinjections/methods
10.
Nanomicro Lett ; 14(1): 180, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36048339

ABSTRACT

Aqueous rechargeable zinc ion batteries are regarded as a competitive alternative to lithium-ion batteries because of their distinct advantages of high security, high energy density, low cost, and environmental friendliness. However, deep-seated problems including Zn dendrite and adverse side reactions severely impede the practical application. In this work, we proposed a freestanding Zn-electrolyte interfacial layer composed of multicapsular carbon fibers (MCFs) to regulate the plating/stripping behavior of Zn anodes. The versatile MCFs protective layer can uniformize the electric field and Zn2+ flux, meanwhile, reduce the deposition overpotentials, leading to high-quality and rapid Zn deposition kinetics. Furthermore, the bottom-up and uniform deposition of Zn on the Zn-MCFs interface endows long-term and high-capacity plating. Accordingly, the Zn@MCFs symmetric batteries can keep working up to 1500 h with 5 mAh cm-2. The feasibility of the MCFs interfacial layer is also convinced in Zn@MCFs||MnO2 batteries. Remarkably, the Zn@MCFs||α-MnO2 batteries deliver a high specific capacity of 236.1 mAh g-1 at 1 A g-1 with excellent stability, and maintain an exhilarating energy density of 154.3 Wh kg-1 at 33% depth of discharge in pouch batteries.

11.
ACS Appl Mater Interfaces ; 14(31): 35769-35779, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35905442

ABSTRACT

Alloying-type anodes including Si- and Sn-based materials are considered the most exploitable anodes for high-performance lithium-ion batteries. However, problems of poor kinetics properties and structural failures such as grain pulverization and coarsening hinder their large-scale application. Herein, SnO2/Si@graphite hybrid anodes, with nano-SnO2 and nano-Si thoroughly mixed with each other and loaded onto graphite flakes, have been prepared by a facile ball milling method. Attributed to the "synergistic effect" between SnO2 and Si, the mechanical stability and kinetics properties can be remarkably enhanced. Furthermore, graphite substrate supplies a fast electrically conductive path and buffers the volume expansion of active particles. Accordingly, SnO2/Si@graphite delivers 798.9 mAh g-1 at 200 mA g-1 and maintains 550.8 mAh g-1 after 1000 cycles at 1 A g-1 in half cells. Impressively, a high energy density of 431.4 Wh kg-1 (based on the mass of anode and cathode) can be obtained in full cells when paired with the NCM622 cathode. This work presents an effective strategy to exploit high-performance alloying-type anodes for LIBs by designing hybrid materials with multiple active components.

12.
Chemosphere ; 288(Pt 2): 132502, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34626659

ABSTRACT

Poor anode performance is one of the main bottlenecks in the development of microbial fuel cells (MFCs) for practical applications. Multilayered Ti3C2 MXene (m-MXene) is an alternative anode modification material because of its high specific surface area and electrical conductivity. However, the multilayered structure, negatively charged surface, and electropositivity of m-MXene could limit its modification effects. In this work, we used a solution-phase flocculation method (ammonium ion method) to restack and aggregate MXene nanosheets as an anode modification material (n-MXene). The n-MXene-modified anode had a higher specific surface area, surface hydrophilicity and surface electropositivity than the m-MXene-modified anode. The n-MXene-modified anode obtained a maximum current density of 2.1 A m-2, which was 31.2% and 61.5% higher than that of the m-MXene-modified anode (1.6 A m-2) and bare carbon fiber cloth anode (1.3 A m-2). This improved anode performance was attributed to both the decrease in the charge transfer resistance and diffusion resistance, which were related to the increased quantity of biomass and microbial nanowire (or pili)-shaped filaments on the electrode surface. This work provides a simple and cost-effective approach to prepare MXene nanosheets for the modification of MFC anodes.


Subject(s)
Bioelectric Energy Sources , Biological Assay , Electrodes , Flocculation , Titanium
13.
Materials (Basel) ; 14(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672033

ABSTRACT

Silicon is investigated as one of the most prospective anode materials for next generation lithium ion batteries due to its superior theoretical capacity (3580 mAh g-1), but its commercial application is hindered by its inferior dynamic property and poor cyclic performance. Herein, we presented a facile method for preparing silicon/tin@graphite-amorphous carbon (Si/Sn@G-C) composite through hydrolyzing of SnCl2 on etched Fe-Si alloys, followed by ball milling mixture and carbon pyrolysis reduction processes. Structural characterization indicates that the nano-Sn decorated porous Si particles are coated by graphite and amorphous carbon. The addition of nano-Sn and carbonaceous materials can effectively improve the dynamic performance and the structure stability of the composite. As a result, it exhibits an initial columbic efficiency of 79% and a stable specific capacity of 825.5 mAh g-1 after 300 cycles at a current density of 1 A g-1. Besides, the Si/Sn@G-C composite exerts enhanced rate performance with 445 mAh g-1 retention at 5 A g-1. This work provides an approach to improve the electrochemical performance of Si anode materials through reasonable compositing with elements from the same family.

14.
Mol Cell Biochem ; 476(2): 1025-1036, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33165823

ABSTRACT

Hypertrophic scar (HS) is a severe skin disorder characterized by excessive extracellular matrix production and abnormal function of fibroblasts. Recent studies have demonstrated that microRNAs (miRNAs) play critical roles in HS formation. This study aims to investigate the role of miR-3613-3p in the formation of HS. The mRNA and miRNA levels were measured by quantitative RT-PCR analysis. The protein levels were examined by Western blot assay. Cell proliferation was determined by Cell Counting Kit-8 assay. The Caspase-3 and Caspase-9 activities were measured using flow cytometry assay. Dual-luciferase activity reporter assay and mRNA-miRNA pulldown assay were conducted to validate the target of miR-3613-3p. miR-3613-3p was downregulated, while arginine and glutamate-rich 1 (ARGLU1) was upregulated in HS fibroblasts (HSFs) and tissues. Overexpression of miR-3613-3p or knockdown of ARGLU1 markedly inhibited the expression of extracellular matrix (ECM) production-associated proteins and promoted Caspase-3 and Caspase-9 activations in HSFs. ARGLU1 was further identified as a direct target of miR-3613-3p. Restoration of ARGLU1 abrogated the suppressive effect of miR-3613-3p on cell proliferation and ECM protein expression of HSFs. Our results demonstrated that miR-3613-3p inhibited HS formation via targeting ARGLU1, which may provide potential therapeutic targets for the management of HS.


Subject(s)
Cicatrix, Hypertrophic/prevention & control , Extracellular Matrix/metabolism , Fibroblasts/pathology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , MicroRNAs/genetics , Cell Proliferation , Cells, Cultured , Cicatrix, Hypertrophic/genetics , Cicatrix, Hypertrophic/pathology , Down-Regulation , Fibroblasts/metabolism , Humans
15.
ACS Appl Mater Interfaces ; 12(50): 55820-55829, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33284592

ABSTRACT

The grain aggregation engendered kinetics failure is regarded as the main reason for the electrochemical decay of nanosized anode materials. Herein, we proposed a dual immobilization strategy to suppress the migration and aggregation of SnOx nanoparticles and corresponding lithiation products through constructing SnOx/TiO2@PC composites. The N-doped carbon could anchor the tin oxide particles and inhibit their aggregation during the preparation process, leading to a uniform distribution of ultrafine SnOx nanoparticles in the matrix. Meanwhile, the incorporated TiO2 component works as parclose to suppress the migration and coarsening of SnOx and corresponding lithiation products. In addition, the N-doped carbon and TiO2/LixTiO2 can significantly improve the electrical and ionic conductivities of the composites, enabling a good diffusion and charge-transfer dynamics. Owing to the dual immobilization from the "synergistic effect" of N-doped carbon and the "parclose effect" of TiO2, the conversion reaction of SnOx remains fully reversible throughout the cycling. Thereby, the composites exhibit excellent cycling performance in half cells and can be fully utilized in full cells. This work may provide an inspiration for the rational design of tin-based anodes for high-performance lithium-ion batteries.

16.
ACS Nano ; 14(12): 17665-17674, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33301296

ABSTRACT

MXenes have been widely explored in energy storage because of their extraordinary properties; however, the majority of research on their application was staged at multilayered MXenes or assisted by carbon materials. Scientifically speaking, the two most distinctive properties of MXenes are usually neglected, composed of large interlayer spacing and abundant surface chemistry, which distinguish MXenes from other two-dimensional materials. Herein, few-layered MXene (f-MXene) nanosheet powders can be easily prepared according to the modified solution-phase flocculation method, completely avoiding the restacking phenomenon of f-MXene nanosheets in preparation and oxidation issues during the storage process. Via further employing the solvothermal reaction and annealing treatment, we successfully constructed pillared SnS/Ti3C2Tx composites decorated with in situ formed TiO2 nanoparticles. In the composites, MXenes can play the role of a conductive network, a buffer matrix for volume expansion of SnS, while the active SnS nanoplates can fully deliver the advantage of high capacity and further induce interlayer engineering of Ti3C2Tx during cycling. As a result, the pillared SnS/Ti3C2Tx MXene composites exhibit obvious improvement in electrochemical performance. Interestingly, there is an apparent enhancement of capacity at succedent cycling, which can be ascribed to the "pillar effect" of Ti3C2Tx MXenes. The efforts and attempts made in this work can further broaden the development of pillared MXene composites.

17.
ACS Appl Mater Interfaces ; 12(47): 52845-52856, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170619

ABSTRACT

Conversion-type batteries with electrode materials partially dissolved in a liquid electrolyte exhibit high specific capacity and excellent redox kinetics, but currently poor stability due to the shuttle effect. Using a solid-electrolyte separator to block the mass exchange between the cathode and the anode can eliminate the shuttle effect. A stable interface between the solid-electrolyte separator and the liquid electrolyte is essential for the battery performance. Here, we demonstrate that a stable interface with low interfacial resistance and limited side reactions can be formed between the sulfide solid-electrolyte ß-Li3PS4 and the widely used ether-based liquid electrolytes, under both reduction and oxidation conditions, due to the rapid formation of an effective protective layer of ether-solvated Li3PS4 at the sulfide/liquid electrolyte interface. This discovery has inspired the design of a ß-Li3PS4-coated solid-electrolyte Li7P3S11 separator with a simultaneously high ion-conduction ability and good interfacial stability with the liquid electrolyte, so that hybrid lithium-sulfur (Li-S) batteries with this composite separator conserve a high discharge capacity of 1047 mA h g-1 and a high second discharge plateau of 2.06 V after 150 cycles.

18.
ACS Appl Mater Interfaces ; 12(37): 41323-41332, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32830944

ABSTRACT

All-solid-state lithium batteries (ASSLBs) have been paid increasing attention because of the better security compared with conventional lithium-ion batteries with flammable organic electrolytes. However, the poor ion transport between the cathode materials greatly hinders the capacity performance of ASSLBs. Herein, an electron/ion dual-conductive electrode framework is proposed for superior performance ASSLBs. Highly electronic conductive reduced graphene oxide and carbon nanotubes interconnect with active materials in the cathodes, constructing a three-dimensional continuous electron transport network. The composite electrolyte penetrates into the porous structure of the electrode, forming a consecutive ionic conductive framework. Furthermore, the thin electrolyte film formed on the surface of the cathode effectively lowers the interfacial resistance with the electrolyte membrane. Highly electron/ion conductive electrodes, combined with the polyethylene oxide-Li6.4La3Zr1.4Ta0.6O12 (PEO-LLZTO) composite electrolyte, show excellent capacity performance for both LiFePO4 and sulfur (lithium-sulfur battery) active materials. In addition, the LiFePO4 cathode demonstrates superior capacity performance and rate capability at room temperature. Furthermore, the relationship between the low Coulombic efficiency and Li dendrite growth has been revealed in this work. An effective layer is formed on the surface of Li metal by the simple modification of cupric fluoride (CuF2), which can stabilize the electrolyte/anode interface. Finally, high-performance ASSLBs with high Coulombic efficiency can be achieved.

19.
Phys Chem Chem Phys ; 22(29): 16482-16526, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32692792

ABSTRACT

Since their discovery in 2011, MXenes have attracted considerable interest in the fields of energy storage due to their unique combination of properties, such as metallic conductivity, hydrophilic nature, large interlayer spacing, and rich surface chemistries. Although there have been extensive reports on MXenes, the most distinguishing features of MXenes have been ignored, namely larger, adjustable interlayer spacing and rich surface chemistry (adsorbed functional groups on the surface and surface electronegativity), which make MXenes different from other two-dimensional materials. By changing the type of active materials, substituting graphene with MXenes to prepare MXene-based composites in a sequential manner is easy, which does not make much sense for the development of MXenes. Based on this view as well as considering the distinguishing nature of MXenes, we mainly discuss the various preparation methods of MXenes and their stability, and we summarize their applications in high-capacity anodes, metal anodes, and lithium-sulfur batteries, particularly pillared MXenes. We highlight the viewpoints on the basis of their components (individual MXenes or MXene-based composites) and adjustable interlayer engineering by using the pillaring technology, which are based on the distinguishing properties of MXenes. Finally, conclusions and perspectives, together with potential proposals for MXenes and their composites in the energy storage field, are also outlined.

20.
Sensors (Basel) ; 20(12)2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32549210

ABSTRACT

To obtain the dynamic surface of high-frequency vibrating mirrors (VMs), a novel method involving multi-field interference (MFI) pattern imaging on a single image is proposed in this paper. Using multiple reflections and refractions, the proposed method generates three interference patterns at the same time, which improves the traditional time-series methods where a single interference pattern can be obtained at one time. Experimental results show that a series of MFI patterns can be obtained on a single image, with the laser repetition frequency (LRF) ranging from 200 Hz to 10 Hz, and the frame rate of the camera at 10 Hz. Particularly if the LRF (10 Hz) is equal to the frame rate of image, crosstalk is avoided completely, which is particularly desirable in dynamic surface measurement. In summary, the MFI imaging method provides an effective way for VM dynamic surface measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...