Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Chem Rec ; 24(7): e202300369, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38953343

ABSTRACT

pH has been considered one of the paramount factors in bodily functions because most cellular tasks exclusively rely on precise pH values. In this context, the current techniques for pH sensing provide us with the futuristic insight to further design therapeutic and diagnostic tools. Thus, pH-sensing (electrochemically and optically) is rapidly evolving toward exciting new applications and expanding researchers' interests in many chemical contexts, especially in biomedical applications. The adaptation of cutting-edge technology is subsequently producing the modest form of these biosensors as wearable devices, which are providing us the opportunity to target the real-time collection of vital parameters, including pH for improved healthcare systems. The motif of this review is to provide insight into trending tech-based systems employed in real-time or in-vivo pH-responsive monitoring. Herein, we briefly go through the pH regulation in the human body to help the beginners and scientific community with quick background knowledge, recent advances in the field, and pH detection in real-time biological applications. In the end, we summarize our review by providing an outlook; challenges that need to be addressed, and prospective integration of various pH in vivo platforms with modern electronics that can open new avenues of cutting-edge techniques for disease diagnostics and prevention.


Subject(s)
Biosensing Techniques , Hydrogen-Ion Concentration , Humans , Wearable Electronic Devices , Electrochemical Techniques
2.
Colloids Surf B Biointerfaces ; 241: 114018, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38865868

ABSTRACT

The pressing need for highly efficient antibacterial strategies arises from the prevalence of microbial biofilm infections and the emergence of rapidly evolving antibiotic-resistant strains of pathogenic bacteria. Photodynamic therapy represents a highly efficient and compelling antibacterial approach, offering promising prospects for effective control of the development of bacterial resistance. However, the effectiveness of many photosensitizers is limited due to the reduced generation of reactive oxygen species (ROS) in hypoxic microenvironment, which commonly occur in pathological conditions such as inflammatory and bacteria-infected wounds. Herein, we designed and prepared two phenothiazine-derived photosensitizers (NB-1 and NB-2), which can effectively generate superoxide anion radicals (O2●-) through the type I process. Both photosensitizers demonstrate significant efficacy in vitro for the eradication of broad-spectrum bacteria. Moreover, NB-2 possesses distinct advantages including strong membrane binding and strong generation of O2●-, rendering it an exceptionally efficient antibacterial agent against mature biofilms. In addition, laser activated NB-2 could be applied to treat MRSA-infected wound in vivo, which offers new opportunities for potential practical applications.


Subject(s)
Anti-Bacterial Agents , Biofilms , Photochemotherapy , Photosensitizing Agents , Superoxides , Wound Infection , Superoxides/metabolism , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Wound Infection/drug therapy , Wound Infection/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Animals , Biofilms/drug effects , Mice , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Phenothiazines/chemistry , Phenothiazines/pharmacology , Humans , Reactive Oxygen Species/metabolism
3.
ACS Biomater Sci Eng ; 10(7): 4541-4551, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38853393

ABSTRACT

NIR-II imaging-guided phototherapy is an attractive, yet challenging, tumor treatment strategy. By monitoring the accumulation of phototherapy reagents at the tumor site through imaging and determining the appropriate therapy window, the therapeutic effect could be significantly improved. Probes with NIR-II (1000-1700 nm) fluorescence emission and a large Stokes shift hold great promise for fluorescence imaging with deep penetration, minimized self-quenching, and high spatiotemporal resolution. However, due to the lack of a suitable molecular framework, the design of a simple small-molecule dye with a large Stokes shift and NIR-II fluorescence emission has rarely been reported. Herein, we prepare an asymmetric D-π-A type NIR-II fluorescence probe (TBy). The probe is incapsulated in an amphiphilic polymer and modified with a fibronectin targeting peptide CREKA, which could recognize the fibrin-fibronectin complex overexpressed in multiple malignant tumors. The nanoparticles thus constructed (TByC-NPs) have maximum fluorescence emission at 1037 nm with a large Stokes shift of 426 nm, which is the largest Stokes shift among organic NIR-II fluorescent dyes reported in the literature. The TByC-NPs exhibit a good NIR-II imaging performance, active tumor targeting, and good photothermal and photodynamic capabilities. In vitro and in vivo studies verify that the TByC nanoplatform shows outstanding biocompatibility for NIR-II imaging-guided phototherapy and provides an excellent antitumor effect.


Subject(s)
Fluorescent Dyes , Phototherapy , Fluorescent Dyes/chemistry , Animals , Phototherapy/methods , Humans , Optical Imaging/methods , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Infrared Rays , Mice, Nude , Neoplasms/diagnostic imaging , Neoplasms/therapy , Cell Line, Tumor , Mice, Inbred BALB C
4.
Biosens Bioelectron ; 259: 116424, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38801792

ABSTRACT

Phototherapy has garnered significant attention in the past decade. Photothermal and photodynamic synergistic therapy combined with NIR fluorescence imaging has been one of the most attractive treatment options because of the deep tissue penetration, high selectivity and excellent therapeutic effect. Benefiting from the superb photometrics and ease of modification, perylene diimide (PDI) and its derivatives have been employed as sensing probes and therapeutic agents in the biological and biomedical research fields, and exhibiting excellent potential. Herein, we reported the development of a novel organic small-molecule phototherapeutic agent, PDI-TN. The absorption of PDI-TN extends into the NIR region, which provides feasibility for NIR phototherapy. PDI-TN overcomes the traditional Aggregation-Caused Quenching (ACQ) effect and exhibits typical characteristics of Aggregation-Induced Emission (AIE). Subsequently, PDI-TN NPs were obtained by using an amphiphilic triblock copolymer F127 to encapsulate PDI-TN. Interestingly, the PDI-TN NPs not only exhibit satisfactory photothermal effects, but also can generate O2•- and 1O2 through type I and type II pathways, respectively. Additionally, the PDI-TN NPs emit strong fluorescence in the NIR-II region, and show outstanding therapeutic potential for in vivo NIR-II fluorescence imaging. To our knowledge, PDI-TN is the first PDI derivative used for NIR-II fluorescence imaging-guided photodynamic and photothermal synergistic therapy, which suggests excellent potential for future biological/biomedical applications.


Subject(s)
Imides , Optical Imaging , Perylene , Photochemotherapy , Perylene/analogs & derivatives , Perylene/chemistry , Perylene/pharmacology , Perylene/therapeutic use , Imides/chemistry , Imides/therapeutic use , Photochemotherapy/methods , Humans , Optical Imaging/methods , Animals , Mice , Fluorescent Dyes/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Photothermal Therapy , Infrared Rays , Cell Line, Tumor
5.
Adv Healthc Mater ; 12(26): e2300871, 2023 10.
Article in English | MEDLINE | ID: mdl-37204046

ABSTRACT

Ferroptosis is a form of programmed cell death and plays an important role in many diseases. Dihydroorotate dehydrogenase (DHODH) and glutathione peroxidase 4 (GPX4) play major roles in cell resistance to ferroptosis. Therefore, inactivation of these proteins provides an excellent opportunity for efficient ferroptosis-based synergistic cancer therapy. In this study, a multifunctional nanoagent (BPNpro ) containing a GPX4 targeting boron dipyrromethene (Bodipy) probe (BP) and a DHODH targeting proteolysis targeting chimera (PROTAC) is reported. BPNpro is prepared using a nanoprecipitation method in the presence of a thermoresponsive liposome, where BP is encapsulated inside and the cathepsin B (CatB)-cleavable PROTAC peptide (DPCP) is modified on the outer surface. In the presence of near-infrared (NIR) photoirradiation, BPNpro is melted and BP is released in tumor cells. Subsequently, BP inhibits the activity of GPX4 by covalently bonding with the selenocysteine at the enzyme active site. In addition, DPCP achieves sustained degradation of DHODH upon activation by CatB overexpressed in the tumor. The synergistic deactivation of GPX4 and DHODH induces extensive ferroptosis and subsequent cell death. In vivo and in vitro studies clearly show that the proposed ferroptosis therapy provides excellent antitumor effect.


Subject(s)
Dihydroorotate Dehydrogenase , Ferroptosis , Neoplasms , Humans , Boron , Ferroptosis/genetics , Ferroptosis/physiology , Neoplasms/drug therapy , Neoplasms/physiopathology
6.
J Mater Chem B ; 10(30): 5774-5783, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35856878

ABSTRACT

Matrix metalloproteinases (MMPs) are important biomarkers for a number of diseases. Thus, the precise determination of MMP activity is of crucial importance. Herein, we report a ratiometric fluorescence method for the sensitive and selective sensing of MMP activity. A number of positively charged MMP substrates (polypeptides) were designed and prepared. These polypeptides could induce aggregation of a negatively charged perylene diimide derivative (PC1). As a result, excimer fluorescence of PC1 was observed. Addition of the corresponding MMP resulted in cleavage of the polypeptide chain and dis-aggregation of PC1, which led to turning on of the PC1 monomer fluorescence. Based on the ratio of the monomer (545 nm, IM) and the excimer (680 nm, IM) fluorescence intensity changes, a ratiometric method I545/I680) was established to detect MMP activity. The enzymatic activity of a number of MMPs (MMP-1, 2, 3, 7, 9 and 13) could be determined with a limit of detection of 4.8, 2.2, 16, 6.0, 1.7 and 5.5 ng mL-1, respectively. Using MMP-2 and MMP-9 as examples, flavonoid herbal extracts as potential inhibitors were studied. It was observed that mangiferin, apigenin, quercetin and isoliquiritigenin had significant inhibiting effects on the enzyme activity. And these herbal extracts also inhibited tumor cell metastasis. Moreover, the developed strategy was also employed to determine the concentration of MMP-9 in human saliva samples. Since the method relies on only noncovalent interactions between the polypeptide and PC1, no covalent labeling of fluorescence dye on the polypeptide substrate is required, and the method is thus simple, broad-spectrum inexpensive and effective. It has the potential to be developed into a clinical test kit.


Subject(s)
Perylene , Fluorescent Dyes , Humans , Matrix Metalloproteinase 9 , Matrix Metalloproteinases , Peptides
7.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948105

ABSTRACT

Cell penetrating peptides (CPPs) are peptides that can directly adapt to cell membranes and then permeate into cells. CPPs are usually covalently linked to the surface of nanocarriers to endow their permeability to the whole system. However, hybrids with lipids or polymers make the metabolism much more sophisticated and even more difficult to determine. In this study, we present a continuous sequence of 18 amino acids (FFAARTMIWY(d-P)GAWYKRI). It forms nanospheres around 170 nm, which increase slightly after loading with siRNA and DOX. Notably, it can be internalized by cancer cells mainly through electronic interactions and PD-L1-mediated endocytosis. Compared with poly-l-lysine and polyethyleneimine, it has a much higher efficiency (about four times) of gene transduction while lowering toxicity. In the treatment of cancer, it causes apoptosis (21%) and inhibits the expression of SURVIVIN protein in vitro. In vivo, it shows good biocompatibility as there are no changes in mice's body weight. When administering peptide-siRNA-DOX, tumor growth is inhibited the most (about three times). These results above prove the sequence to be a good candidate for gene therapy and drug delivery.


Subject(s)
B7-H1 Antigen/metabolism , Cell-Penetrating Peptides , Doxorubicin , Drug Delivery Systems , Endocytosis , Nanospheres , Neoplasm Proteins/metabolism , Neoplasms/drug therapy , RNA, Small Interfering , Animals , B7-H1 Antigen/genetics , Cell Line, Tumor , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/pharmacokinetics , Cell-Penetrating Peptides/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Nanospheres/chemistry , Nanospheres/therapeutic use , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacokinetics , RNA, Small Interfering/pharmacology , Rats , Rats, Sprague-Dawley , Survivin/genetics , Survivin/metabolism
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34830111

ABSTRACT

Although some breast cancer patients die due to tumor metastasis rather than from the primary tumor, the molecular mechanism of metastasis remains unclear. Therefore, it is necessary to inhibit breast cancer metastasis during cancer treatment. In this case, after designing and synthesizing CTI-2, we found that CTI-2 treatment significantly reduced breast cancer cell metastasis in vivo and in vitro. Notably, with the treatment of CTI-2 in breast cancer cells, the expression level of E-cadherin increased, while the expression level of N-cadherin and vimentin decreased. In addition, after CTI-2 treatment, those outflow levels for p-ERK, p-p38, and p-JNK diminished, while no significant changes in the expression levels of ERK, JNK, or p38 were observed. Our conclusion suggested that CTI-2 inhibits the epithelial-mesenchymal transition (EMT) of breast carcinoma cells by inhibiting the activation of the mitogen-activated protein kinase (MAPK) signaling pathway, thereby inhibiting the metastasis of breast tumor cells. Therefore, we believe that CTI-2 is another candidate for breast tumor medication.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Epithelial-Mesenchymal Transition/drug effects , MAP Kinase Signaling System/drug effects , Animals , Breast Neoplasms/metabolism , Female , Humans , MCF-7 Cells , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
9.
Int J Pharm ; 608: 121066, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34481009

ABSTRACT

Doxorubicin (DOX) is one of the most commonly used and effective chemotherapy drugs among anthracyclines. An inherent limitation of DOX is its nonspecificity, which can cause serious side effects, thereby preventing the therapeutic use of high drug doses. In this study, we designed and created a simple nano-drug delivery system (PEG-MAF = P) with low biological toxicity that was responsive to the tumor environment. PEG-MAF = P was designed to self-assemble into nanospheres via control of a phenylalanine dipeptide (FF). The N-terminus of the peptide was linked to aldehyde groups at both ends of oxidized Pluronic F127 (F127-CHO) via Schiff bonds. The acidic environment surrounding the tumors was suitable for triggering the Schiff bonds, causing the nanospheres to disintegrate. The C-terminus of FF was connected to a ligand peptide, ATN-161, which was able to recognize cells expressing high levels of integrin α5ß1 antigens both in vivo and in vitro. To prevent the impediment in drug release, PEG was linked via a matrix metalloproteinase-9 response peptide. Therefore, in an acidic tumor microenvironment containing MMP-9, PEG-MAF = P disintegrated and rapidly released the drug. PEG-MAF = P exhibited low cytotoxicity, high drug-loading rate, and excellent antitumor properties both in vivo and in vitro. Compared with free DOX, PEG-MAF = P-DOX reduced injury to normal tissues.


Subject(s)
Drug Carriers , Tumor Microenvironment , Antibiotics, Antineoplastic , Cell Line, Tumor , Doxorubicin , Drug Delivery Systems , Drug Liberation , Hydrogen-Ion Concentration , Polyethylene Glycols
10.
Colloids Surf B Biointerfaces ; 199: 111553, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33418208

ABSTRACT

The nanocomposites with highly synergistic effect show important potential application as nanozymes. Herein, the chain-like Au/carbon dots (CDs) (GCDs) nanocomposites were prepared by self-assembly method. The negatively charged Au nanoparticles (NPs) and positively charged CDs were connected by the electrostatic interaction. Then, the electron transfer between Au and CDs induces the strong catalytic effect of GCDs nanocomposites. The cross-linking reaction occurred between amino groups and carboxyl groups on the surface of CDs, which led to form the chain-like Au aggregation surrounded by carbon shells. By FDTD simulation, the aggregation of Au NPs may enhance the electromagnetic field so that the surface-enhanced Raman scattering (SERS) signal can be increased based on GCDs nanocomposites as substrate. Otherwise, the GCDs nanocomposites can also be used to catalyze the oxidation of colourless3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB in the presence of H2O2, which displays the enhanced peroxidase-like activity compared with alone Au NPs or CDs. The obvious oxidation process of TMB molecules may be monitored by the change of SERS signal during the catalytic reaction. On this basis, GCDs nanocomposites can be further used for detection of glucose. The detection level of glucose is obtained as low as 5 × 10-7 M. Therefore, this provides a method to detect the glucose based on GCDs nanocomposites as an enzyme mimic.


Subject(s)
Metal Nanoparticles , Nanocomposites , Carbon , Glucose , Gold , Hydrogen Peroxide , Peroxidases
11.
RSC Adv ; 11(3): 1461-1471, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424141

ABSTRACT

The treatment of breast cancer mainly relies on chemotherapy drugs, which present significant side effects. The most typical example is the cardiotoxicity and bone marrow suppression associated with doxorubicin (DOX). Therefore, this drug is not the first choice in clinical treatment. We designed ATN-FFPFF-ATN, a new targeted antitumor drug carrier, polymerized from phenylalanine dipeptide (FF), ATN-161 peptide, and Pluronic® F-127. The peptide and Pluronic® F-127 are linked with acetal and are, therefore, acid-sensitive. As cancer can reduce pH through complex mechanisms and subsequently maintain acid ambience, our vehicle can smartly unravel at a peculiar position, through which the drug can specifically accumulate inside the tumor. ATN-161 is a protein ligand of integrin α5ß1, which is highly expressed on the surface of some breast cancer cells. This targeting peptide sequence can play a role in the selective delivery of DOX to tumor cells. The DOX-carrying vector was able to significantly inhibit cell proliferation and promote cell apoptosis in MDA-MB-231 cells. Based on these results, ATN-FFPFF-ATN with pH response is a promising vehicle for DOX delivery.

12.
Colloids Surf B Biointerfaces ; 183: 110385, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31408781

ABSTRACT

Polypeptide carriers have a good cell compatibility, rich functionality, and facile synthesis and modification, make them promising materials as siRNA vectors. Phenylalanine dipeptide (FF) has been previously assessed as an siRNA vector and showed to have two major drawbacks, namely poor water solubility and poor serum stability. Herein, the FF backbone was modified by ligating a PEG-Arg-Ala (PEG-RA) sequence at the N-terminus to increase its hydrophilicity and serum stability. Arg is a typical amino acid in the cell penetrating peptide, which can increase the efficiency of cell internalization. Ala acts as a spacer to avoid steric hindrance. The target sequence PEG-RAFF was synthesized by a solid phase peptide synthesis. The morphology, particle size, and siRNA ratio were assessed by SEM, TEM, DLS, and gel electrophoresis. Further, MCF-7 cells were used as a model and survivin-siRNA as a passenger to assess cell internalization, inhibition of gene expression rate, and apoptosis rate using confocal microscopy, real-time PCR, and flow cytometry. At a concentration of 1 mg/mL, PEG-RAFF took the form of nanovesicles with a diameter of 154.74 ±â€¯14.36 nm. The optimal PEG-RAFF to siRNA ratio was N/P = 100:1. Compared with the control group, the red fluorescence of TAMRA(Carboxytetramethylrhodamine, Red fluorescence)-siRNA transfected into cells was clearly visible in the confocal microscope image. The inhibition rate of survivin was 67.99 ±â€¯10.31%, and the apoptotic rate was 16.07%. Therefore, PEG-RAFF has potential as an siRNA carrier in cancer treatment.


Subject(s)
Apoptosis/genetics , Drug Carriers , Nanoparticles/metabolism , Polyethylene Glycols/chemistry , RNA, Small Interfering/genetics , Survivin/genetics , Alanine/chemistry , Arginine/chemistry , Fluorescent Dyes/metabolism , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , MCF-7 Cells , Nanoparticles/chemistry , Particle Size , Phenylalanine/chemistry , RNA, Small Interfering/metabolism , Rhodamines/metabolism , Solid-Phase Synthesis Techniques , Survivin/antagonists & inhibitors , Survivin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL