Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Publication year range
1.
J Chem Phys ; 143(21): 214904, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26646888

ABSTRACT

Using the self-consistent field lattice technique, the effects of concentration and hydrophobic middle block length (where the chain length remains constant) on aggregation behavior are studied in amphiphilic symmetric triblock copolymer solutions. The heat capacity peak for the unimer-micelle transition and the distribution peaks for the different degrees of aggregation for micelles and small aggregates (submicelles) are calculated. Analysis of the conducted computer simulations shows that the transition broadness dependence on concentration is determined by the hydrophobic middle block length, and this dependence is distinctly different when the length of the hydrophobic middle block changes. Different size for small aggregates simultaneously appear in the transition region. As temperature decreases, the number of different size small aggregates for the large hydrophobic middle block length first ascends and then descends in aggregation degree order. These results indicate that any transition broadness change with concentration is related to the mechanism of fragmentation and fusion. These results are helpful for interpreting the aggregation process of amphiphilic copolymers at equilibrium.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(11): 3031-4, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23387173

ABSTRACT

In the present paper, the frequency shift and line widths of acetonitrile/H2O, DMSO/H2O and acetone/H2O aqueous binary solutions at different concentration were measured by Raman spectroscopy. The experimental results were analyzed by mixture model and empirical formula of line widths. The results show that the stronger the hydrogen bond interaction, the greater the line widths of Raman spectra in the three aqueous binary solutions; the line width of Raman spectra not only is affected by concentration fluctuation, but also is affected by hydrogen bond. In addition, the experimental data points are again nicely fitted using the empirical formula.

3.
J Chem Phys ; 132(16): 164905, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20441308

ABSTRACT

The phase behavior of physically associating polymer solutions, where the polymer chain contains a small fraction of "stickers" regularly placed along the backbone, is studied using self-consistent field lattice model. Two inhomogenous morphologies are observed. One is a microfluctuation homogenous (MFH) morphology, where the mean-field values of the local average concentrations of polymers phi(P)(r) and stickers phi(st)(r) slightly fluctuate around their respective bulk average values phi(P) and phi(st) and regularly from site to site. The other is a randomly close-packed micelle (RCPM) morphology. The structure of the micelle in RCPM morphology is similar to that of the "flower micelle" in the telechelic associative polymer system, where stickers are located in the core of the micelle and nonsticky groups in the corona. When phi(P) approximately or > 0.08, if homogenous associating polymer solutions are cooled, MFH morphology appears, and the system entirely changes from homogenous solutions (HS) to MFH morphology; If the solutions are cooled further, RCPM morphology appears. When phi(P) < 0.08, however, RCPM morphology appears immediately. If phi(P) < 0.53, a macroscopic phase separation, where the polymer rich phase is RCPM morphology, occurs. If phi(P) approximately or > 0.53, only RCPM morphology is found in the system. A peak appears in the temperature-dependent specific-heat curve C(V)(chi) at each transition point. For the HS-MFH transition, C(V)(chi) has an abrupt increase and a slow decrease, whereas for the MFH-RCPM transition, both the increase and the decrease in C(V)(chi) are slow. Furthermore, the system with only MFH morphology may be trapped in one of the two energy basins in a experimental time scale. However, the appearance of RCPM morphology means that the system is trapped in one of a series of "deeper" energy basins, and it is very difficult to jump off this deep basin into the one of MFH morphology or one of the other RCPM morphologies through thermal fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL
...