Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.938
Filter
1.
Adv Sci (Weinh) ; : e2402287, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711218

ABSTRACT

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.

2.
Front Pharmacol ; 15: 1270073, 2024.
Article in English | MEDLINE | ID: mdl-38725662

ABSTRACT

The human eye is susceptible to various disorders that affect its structure or function, including glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Mitochondrial dysfunction has been identified as a critical factor in the pathogenesis and progression of eye disorders, making it a potential therapeutic target in the clinic. Natural products have been used in traditional medicine for centuries and continue to play a significant role in modern drug development and clinical therapeutics. Recently, there has been a surge in research exploring the efficacy of natural products in treating eye disorders and their underlying physiological mechanisms. This review aims to discuss the involvement of mitochondrial dysfunction in eye disorders and summarize the recent advances in the application of natural products targeting mitochondria. In addition, we describe the future perspective and challenges in the development of mitochondria-targeting natural products.

3.
J Hazard Mater ; 474: 134729, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38805811

ABSTRACT

Climate change and human activities escalate the frequency and intensity of wildfires, threatening amphibian habitats and survival; yet, research on these impacts remains limited. Wildfire ash alters water quality, introduces contaminants, and may disrupt microbial communities, impacting gut and skin microbiota; however, the effects on gut and skin microbiota remain unclear. Rana dybowskii were exposed to five concentrations (0 g L-1, 1.25 g L-1, 2.5 g L-1, 5 g L-1, and 10 g L-1) of aqueous extracts of wildfire ashes (AEAs) for 30 days to assess AEAs' metal content, survival, and microbiota diversity via Illumina sequencing. Our results showed that the major elements in ash were Ca > K > Mg > Al > Fe > Na > Mn, while in AEA they were K > Ca > Na > Mg > As > Al > Cu. A significant decrease in amphibian survival rates with increased AEA concentration was shown. The beta diversity analysis revealed distinct shifts in microbiota composition. Notably, bacterial genera associated with potential health risks showed increased abundance in skin microbiota, emphasising the potential for ash exposure to affect amphibian health. Functional prediction analyses revealed significant shifts in metabolic pathways related to health and disease, indicating that wildfire ash exposure may influence amphibian health through changes in microbial functions. This study highlights the urgent need for strategies to mitigate wildfire ash impacts on amphibians, as it significantly alters microbiota and affects their survival and health.

4.
Article in English | MEDLINE | ID: mdl-38796730

ABSTRACT

OBJECTIVE: Whether ligation or reconstruction should be performed after radical resection of the tumor and carotid artery in patients with head and neck cancers invading the carotid artery (HNC-CA) has been controversial. This paper provides a review and meta-analysis of the efficacy of these 2 modalities. DATA SOURCES: PubMed, Cochrane, Web of Science, Scopus, and Ovid databases were searched through August 2023. REVIEW METHODS: Descriptive, graphical, tabular, and quantitative data were extracted. The statistical outcomes (risk difference, RD) were synthesized under a random-effects model. This study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses reporting guidelines. RESULTS: A total of 22 papers and 337 patients met the inclusion criteria for the literature review. Statistical analysis showed that the RD of overall survival (OS) rate at 1-year was 32% (95% confidence interval [CI]: 21%-42%) for ligation and 70% (95% CI: 65%-76%) for reconstruction (P < .05). The RD for OS rate at 2-year was 16% (95% CI: 7%-26%) for ligation and 39% (95% CI: 30%-47%) for reconstruction (P < .05). The RD for disease-free survival rate at 1-year was 27% (95% CI: 17%-38%) for ligation and 60% (95% CI: 51%-70%) for reconstruction (P < .05). There were no statistically significant differences (P > .05) between the 2 surgical modalities in terms of locoregional recurrence rate, carotid blowout rate, surgery-related complications rate, neurological complications rate, and perioperative mortality rate. CONCLUSION: This review demonstrates the significant advantage of carotid artery reconstruction surgery in short-term patient survival, thus making it a recommended option for HNC-CA patients undergoing radical surgery.

5.
Proc Natl Acad Sci U S A ; 121(22): e2316176121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771878

ABSTRACT

The striato-nigral (Str-SN) circuit is composed of medium spiny neuronal projections that are mainly sent from the striatum to the midbrain substantial nigra (SN), which is essential for regulating motor behaviors. Dysfunction of the Str-SN circuitry may cause a series of motor disabilities that are associated with neurodegenerative disorders, such as Huntington's disease (HD). Although the etiology of HD is known as abnormally expanded CAG repeats of the huntingtin gene, treatment of HD remains tremendously challenging. One possible reason is the lack of effective HD model that resembles Str-SN circuitry deficits for pharmacological studies. Here, we first differentiated striatum-like organoids from human pluripotent stem cells (hPSCs), containing functional medium spiny neurons (MSNs). We then generated 3D Str-SN assembloids by assembling striatum-like organoids with midbrain SN-like organoids. With AAV-hSYN-GFP-mediated viral tracing, extensive MSN projections from the striatum to the SN are established, which formed synaptic connection with GABAergic neurons in SN organoids and showed the optically evoked inhibitory postsynaptic currents and electronic field potentials by labeling the striatum-like organoids with optogenetic virus. Furthermore, these Str-SN assembloids exhibited enhanced calcium activity compared to that of individual striatal organoids. Importantly, we further demonstrated the reciprocal projection defects in HD iPSC-derived assembloids, which could be ameliorated by treatment of brain-derived neurotrophic factor. Taken together, these findings suggest that Str-SN assembloids could be used for identifying MSN projection defects and could be applied as potential drug test platforms for HD.


Subject(s)
Huntington Disease , Organoids , Humans , Huntington Disease/pathology , Huntington Disease/metabolism , Organoids/pathology , Organoids/metabolism , Substantia Nigra/pathology , Substantia Nigra/metabolism , Corpus Striatum/pathology , Corpus Striatum/metabolism , Neurons/metabolism , Neurons/pathology , Cell Differentiation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Pluripotent Stem Cells/metabolism , Optogenetics
6.
Food Res Int ; 187: 114327, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763631

ABSTRACT

The mechanical process has a widely usage in large-scale high-temperature Daqu (HTD) enterprises, however, the quality of the mechanical HTD is gapped with the HTD by traditional process. Currently, the understanding of the mechanism behind this phenomenon is still over-constrained. To this end, the discrepancies in fermentation parameters, enzymatic characteristics, microbial assembly and succession patterns, metabolic phenotypes were compared between traditional HTD and mechanical HTD in this paper. The results showed that mechanical process altered the temperature ramping procedure, resulting in a delayed appearance of the peak temperature. This alteration shifted the assembly pattern of the initial bacterial community from determinism to stochasticity, while having no impact on the stochastic assembly pattern of the fungal community. Concurrently, mechanical pressing impeded the accumulation of arginase, tetramethylpyrazine, trimethylpyrazine, 2-methoxy-4-vinylphenol, and butyric acid, as the target dissimilarities in metabolism between traditional HTD and mechanical HTD. Pearson correlation analysis combined with the functional prediction further demonstrated that Bacillus, Virgibacillus, Oceanobacillus, Kroppenstedtia, Lactobacillus, and Monascus were mainly contributors to metabolic variances. The Redundancy analysis (RDA) of fermented environmental factors on functional ASVs indicated that high temperature, high acid and low moisture were key positive drivers on the microbial metabolism for the characteristic flavor in HTD. Based on these results, heterogeneous mechanisms between traditional HTD and mechanical HTD were explored, and controllable metabolism targets were as possible strategies to improve the quality of mechanical HTD.


Subject(s)
Fermentation , Food Microbiology , Hot Temperature , Food Handling/methods , Phenotype , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Fungi/metabolism
7.
Comput Methods Programs Biomed ; 252: 108235, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38776830

ABSTRACT

BACKGROUND AND OBJECTIVE: Computer-based biomedical image segmentation plays a crucial role in planning of assisted diagnostics and therapy. However, due to the variable size and irregular shape of the segmentation target, it is still a challenge to construct an effective medical image segmentation structure. Recently, hybrid architectures based on convolutional neural networks (CNNs) and transformers were proposed. However, most current backbones directly replace one or all convolutional layers with transformer blocks, regardless of the semantic gap between features. Thus, how to sufficiently and effectively eliminate the semantic gap as well as combine the global and local information is a critical challenge. METHODS: To address the challenge, we propose a novel structure, called BiU-Net, which integrates CNNs and transformers with a two-stage fusion strategy. In the first fusion stage, called Single-Scale Fusion (SSF) stage, the encoding layers of the CNNs and transformers are coupled, with both having the same feature map size. The SSF stage aims to reconstruct local features based on CNNs and long-range information based on transformers in each encoding block. In the second stage, Multi-Scale Fusion (MSF), BiU-Net interacts with multi-scale features from various encoding layers to eliminate the semantic gap between deep and shallow layers. Furthermore, a Context-Aware Block (CAB) is embedded in the bottleneck to reinforce multi-scale features in the decoder. RESULTS: Experiments on four public datasets were conducted. On the BUSI dataset, our BiU-Net achieved 85.50 % on Dice coefficient (Dice), 76.73 % on intersection over union (IoU), and 97.23 % on accuracy (ACC). Compared to the state-of-the-art method, BiU-Net improves Dice by 1.17 %. For the Monuseg dataset, the proposed method attained the highest scores, reaching 80.27 % and 67.22 % for Dice and IoU. The BiU-Net achieves 95.33 % and 81.22 % Dice on the PH2 and DRIVE datasets. CONCLUSIONS: The results of our experiments showed that BiU-Net transcends existing state-of-the-art methods on four publicly available biomedical datasets. Due to the powerful multi-scale feature extraction ability, our proposed BiU-Net is a versatile medical image segmentation framework for various types of medical images. The source code is released on (https://github.com/ZYLandy/BiU-Net).

8.
Arch Gynecol Obstet ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782764

ABSTRACT

PURPOSE: The identification and prognosis of the agenesis of the corpus callosum (ACC) for prenatal consultation are complex and currently unclear. This study aims to explore the correlated genetic mutations of prenatal ACC. METHODS: We retrospectively analyzed 114 prenatal cases of ACC. All cases (n = 114) were subjected to chromosomal microarray analysis (CMA), and 66 CMA-negative cases underwent prenatal exome sequencing (pES) for further analysis. RESULTS: CMA was diagnosed positively in 15/114 (13.2%) cases and pES was diagnosed positively in 24/66 (36.4%) CMA-negative cases. The detection rate of genetic causes between complete and partial ACCs was not significantly different (P > 0.05). Between isolated and non-isolated (other anomalies present) ACCs, the diagnostic rate of pES in non-isolated cases was significantly higher (P < 0.001), while CMA results did not differ (P > 0.05). The diagnostic rate of CMA was significantly increased in cases combined with intracranial and extracranial malformations (P = 0.014), while no CMA positivity was detected in cases combined with only intracranial malformations. CONCLUSION: For fetuses with prenatal ACC, further pES analysis should be recommended after negative CMA results. Chromosome abnormalities are less likely to occur when ACC with only intracranial malformations combined.

9.
World J Clin Oncol ; 15(4): 531-539, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38689626

ABSTRACT

Metastasis remains a major challenge in the successful management of malignant diseases. The liver is a major site of metastatic disease and a leading cause of death from gastrointestinal malignancies such as colon, stomach, and pancreatic cancers, as well as melanoma, breast cancer, and sarcoma. As an important factor that influences the development of metastatic liver cancer, alternative splicing drives the diversity of RNA transcripts and protein subtypes, which may provide potential to broaden the target space. In particular, the dysfunction of splicing factors and abnormal expression of splicing variants are associated with the occurrence, progression, aggressiveness, and drug resistance of cancers caused by the selective splicing of specific genes. This review is the first to provide a detailed summary of the normal splicing process and alterations that occur during metastatic liver cancer. It will cover the role of alternative splicing in the mechanisms of metastatic liver cancer by examining splicing factor changes, abnormal splicing, and the contribution of hypoxia to these changes during metastasis.

10.
Cell Death Differ ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762596

ABSTRACT

Adipogenesis significantly contributes to healthy adipose tissue expansion in obesity. Increasing adipocyte number or function to alleviate adipose tissue overload could serve as a therapeutic strategy for both lipodystrophy and obesity-related metabolic syndrome. Inorganic pyrophosphatase (PPA1) is an enzyme that catalyzes the hydrolysis of pyrophosphate (PPi) and is involved in many biochemical reactions, but its function in adipose tissue has not been studied previously. In this study, we demonstrated that adipose-specific PPA1 knockout (PPA1AKO) mice showed lipodystrophy and spontaneously developed hepatic steatosis and severe insulin resistance under normal chow diet feeding. PPA1 deficiency suppressed the differentiation of primary adipocyte precursors and 3T3-L1 cells. Notably, PPA1 overexpression can restore inhibited adipogenesis in preadipocytes isolated from db/db mice and type 2 diabetes patients. Mechanistic studies have revealed that PPA1 acts as a positive regulator of early adipocyte differentiation by promoting CCAAT/enhancer-binding proteinß and δ (C/EBPß and δ) protein stability. Moreover, the function of PPA1 in adipogenesis is independent of its PPi catalytic activity. Collectively, our in vivo and in vitro findings demonstrated that PPA1 is a novel critical upstream regulator of adipogenesis, controlling adipose tissue development and whole-body metabolic homeostasis.

11.
Exp Eye Res ; 244: 109919, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

12.
Crit Rev Food Sci Nutr ; : 1-25, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733326

ABSTRACT

The stabilization of Pickering emulsions using micro/nanoparticles has gained significant attention due to their wide range of potential applications in industries such as cosmetics, food, catalysis, tissue engineering, and drug delivery. There is a growing demand for the development of environmentally friendly micro/nanoparticles to create stable Pickering emulsions. Naturally occurring polysaccharides like pectin offer promising options as they can assemble at oil/water interfaces. This polysaccharide is considered a green candidate because of its biodegradability and renewable nature. The physicochemical properties of micro/nanoparticles, influenced by fabrication methods and post-modification techniques, greatly impact the characteristics and applications of the resulting Pickering emulsions. This review focuses on recent advancements in Pickering emulsions stabilized by pectin-based micro/nanoparticles, as well as the application of functional materials in delivery systems, bio-based films and 3D printing using these emulsions as templates. The effects of micro/nanoparticle properties on the characteristics of Pickering emulsions and their applications are discussed. Additionally, the obstacles that currently hinder the practical implementation of pectin-based micro/nanoparticles and Pickering emulsions, along with future prospects for their development, are addressed.

13.
PLoS One ; 19(5): e0303684, 2024.
Article in English | MEDLINE | ID: mdl-38787912

ABSTRACT

To construct and internally and externally validate a nomogram model for predicting the severity of acute pancreatitis (AP) based on the CT severity index (CTSI).A retrospective analysis of clinical data from 200 AP patients diagnosed at the Hefei Third Clinical College of Anhui Medical University from June 2019 to June 2022 was conducted. Patients were classified into non-severe acute pancreatitis (NSAP, n = 135) and severe acute pancreatitis (SAP, n = 65) based on final clinical diagnosis. Differences in CTSI, general clinical features, and laboratory indicators between the two groups were compared. The LASSO regression model was used to select variables that might affect the severity of AP, and these variables were analyzed using multivariate logistic regression. A nomogram model was constructed using R software, and its AUC value was calculated. The accuracy and practicality of the model were evaluated using calibration curves, Hosmer-Lemeshow test, and decision curve analysis (DCA), with internal validation performed using the bootstrap method. Finally, 60 AP patients treated in the same hospital from July 2022 to December 2023 were selected for external validation.LASSO regression identified CTSI, BUN, D-D, NLR, and Ascites as five predictive factors. Unconditional binary logistic regression analysis showed that CTSI (OR = 2.141, 95%CI:1.369-3.504), BUN (OR = 1.378, 95%CI:1.026-1.959), NLR (OR = 1.370, 95%CI:1.016-1.906), D-D (OR = 1.500, 95%CI:1.112-2.110), and Ascites (OR = 5.517, 95%CI:1.217-2.993) were independent factors influencing SAP. The established prediction model had a C-index of 0.962, indicating high accuracy. Calibration curves demonstrated good consistency between predicted survival rates and actual survival rates. The C-indexes for internal and external validation were 0.935 and 0.901, respectively, with calibration curves close to the ideal line.The model based on CTSI and clinical indicators can effectively predict the severity of AP, providing a scientific basis for clinical decision-making by physicians.


Subject(s)
Nomograms , Pancreatitis , Severity of Illness Index , Tomography, X-Ray Computed , Humans , Pancreatitis/diagnostic imaging , Pancreatitis/diagnosis , Female , Male , Retrospective Studies , Middle Aged , Tomography, X-Ray Computed/methods , Case-Control Studies , Adult , Aged , Logistic Models , Acute Disease
14.
Int J Oral Sci ; 16(1): 42, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782892

ABSTRACT

Bisphosphonate-related osteonecrosis of jaw (BRONJ) is characterized by impaired osteogenic differentiation of orofacial bone marrow stromal cells (BMSCs). Corin has recently been demonstrated to act as a key regulator in bone development and orthopedic disorders. However, the role of corin in BRONJ-related BMSCs dysfunction remains unclarified. A m6A epitranscriptomic microarray study from our group shows that the CORIN gene is significantly upregulated and m6A hypermethylated during orofacial BMSCs osteogenic differentiation. Corin knockdown inhibits BMSCs osteogenic differentiation, whereas corin overexpression or soluble corin (sCorin) exerts a promotion effect. Furthermore, corin expression is negatively regulated by bisphosphonates (BPs). Corin overexpression or sCorin reverses BPs-impaired BMSCs differentiation ability. Mechanistically, we find altered expression of phos-ERK in corin knockdown/overexpression BMSCs and BMSCs under sCorin stimulation. PD98059 (a selective ERK inhibitor) blocks the corin-mediated promotion effect. With regard to the high methylation level of corin during osteogenic differentiation, we apply a non-selective m6A methylase inhibitor, Cycloleucine, which also blocks the corin-mediated promotion effect. Furthermore, we demonstrate that METTL7A modulates corin m6A modification and reverses BPs-impaired BMSCs function, indicating that METTL7A regulates corin expression and thus contributes to orofacial BMSCs differentiation ability. To conclude, our study reveals that corin reverses BPs-induced BMSCs dysfunction, and METTL7A-mediated corin m6A modification underlies corin promotion of osteogenic differentiation via the ERK pathway. We hope this brings new insights into future clinical treatments for BRONJ.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells , Osteogenesis , Cell Differentiation/drug effects , Osteogenesis/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Diphosphonates/pharmacology , Humans , Methyltransferases/metabolism , Bisphosphonate-Associated Osteonecrosis of the Jaw , Animals , Up-Regulation , Blotting, Western , Cells, Cultured
15.
Phytochemistry ; 223: 114109, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697239

ABSTRACT

A previously undescribed open-loop decarbonizing cembranolide, sarcocinerenolide A, and eight undescribed cembranolides, sarcocinerenolides B-I, characterized by poly-membered oxygen ring fragments were isolated from the soft coral Sarcophyton cinereum collected from the South China Sea. The structures and absolute configurations of these previously undescribed compounds were precisely determined by analysis of NMR data, DP4+ and ECD spectra. The bioactivities of the compounds were evaluated using zebrafish models and sarcocinerenolides C and H exhibited anti-thrombotic activity.


Subject(s)
Anthozoa , Diterpenes , Animals , Anthozoa/chemistry , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/isolation & purification , Molecular Structure , Zebrafish , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/isolation & purification , China , Structure-Activity Relationship
16.
Nat Commun ; 15(1): 4491, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802374

ABSTRACT

Actin nucleotide-dependent actin remodeling is essential to orchestrate signal transduction and cell adaptation. Rapid energy starvation requires accurate and timely reorganization of the actin network. Despite distinct treadmilling mechanisms of ADP- and ATP-actin filaments, their filament structures are nearly identical. How other actin-binding proteins regulate ADP-actin filament assembly is unclear. Here, we show that Spa2 which is the polarisome scaffold protein specifically remodels ADP-actin upon energy starvation in budding yeast. Spa2 triggers ADP-actin monomer nucleation rapidly through a dimeric core of Spa2 (aa 281-535). Concurrently, the intrinsically disordered region (IDR, aa 1-281) guides Spa2 undergoing phase separation and wetting on the surface of ADP-G-actin-derived F-actin and bundles the filaments. Both ADP-actin-specific nucleation and bundling activities of Spa2 are actin D-loop dependent. The IDR and nucleation core of Spa2 are evolutionarily conserved by coexistence in the fungus kingdom, suggesting a universal adaptation mechanism in the fungal kingdom in response to glucose starvation, regulating ADP-G-actin and ADP-F-actin with high nucleotide homogeneity.


Subject(s)
Actins , Adenosine Diphosphate , Glucose , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Actins/metabolism , Glucose/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Adenosine Diphosphate/metabolism , Adenosine Diphosphate/analogs & derivatives , Actin Cytoskeleton/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/chemistry
17.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167220, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718847

ABSTRACT

Glioblastoma is one of the most challenging malignancies with high aggressiveness and invasiveness and its development and progression of glioblastoma highly depends on branched-chain amino acid (BCAA) metabolism. The study aimed to investigate effects of inhibition of BCAA metabolism with cytosolic branched-chain amino acid transaminase (BCATc) Inhibitor 2 on glioblastoma, elucidate its underlying mechanisms, and explore therapeutic potential of targeting BCAA metabolism. The expression of BCATc was upregulated in glioblastoma and BCATc Inhibitor 2 precipitated apoptosis both in vivo and in vitro with the activation of Bax/Bcl2/Caspase-3/Caspase-9 axis. In addition, BCATc Inhibitor 2 promoted K63-linkage ubiquitination of mitofusin 2 (Mfn2), which subsequently caused lysosomal degradation of Mfn2, and then oxidative stress, mitochondrial fission and loss of mitochondrial membrane potential. Furthermore, BCATc Inhibitor 2 treatment resulted in metabolic reprogramming, and significant inhibition of expression of ATP5A, UQCRC2, SDHB and COX II, indicative of suppressed oxidative phosphorylation. Moreover, Mfn2 overexpression or scavenging mitochondria-originated reactive oxygen species (ROS) with mito-TEMPO ameliorated BCATc Inhibitor 2-induced oxidative stress, mitochondrial membrane potential disruption and mitochondrial fission, and abrogated the inhibitory effect of BCATc Inhibitor 2 on glioblastoma cells through PI3K/AKT/mTOR signaling. All of these findings indicate suppression of BCAA metabolism promotes glioblastoma cell apoptosis via disruption of Mfn2-mediated mitochondrial dynamics and inhibition of PI3K/AKT/mTOR pathway, and suggest that BCAA metabolism can be targeted for developing therapeutic agents to treat glioblastoma.


Subject(s)
Amino Acids, Branched-Chain , Apoptosis , GTP Phosphohydrolases , Glioblastoma , Oxidative Stress , Humans , Oxidative Stress/drug effects , Apoptosis/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , GTP Phosphohydrolases/metabolism , Animals , Amino Acids, Branched-Chain/metabolism , Cell Line, Tumor , Mice , Mitochondrial Proteins/metabolism , Ubiquitin/metabolism , Signal Transduction/drug effects , Male , Ubiquitination/drug effects , Reactive Oxygen Species/metabolism
18.
Int J Ophthalmol ; 17(3): 485-490, 2024.
Article in English | MEDLINE | ID: mdl-38721517

ABSTRACT

AIM: To investigate the long-term changes of corneal densitometry (CD) and its contributing elements after small incision lenticule extraction (SMILE). METHODS: Totally 31 eyes of 31 patients with mean spherical equivalent of -6.46±1.50 D and mean age 28.23±7.38y were enrolled. Full-scale examinations were conducted on all patients preoperatively and during follow-up. Visual acuity, manifest refraction, axial length, corneal thickness, corneal higher-order aberrations, and CD were evaluated. RESULTS: All surgeries were completed successfully without complications or adverse events. Ten-year safety index was 1.17±0.20 and efficacy 1.04±0.28. CD value of 0-6 mm zones in central layer was statistically significantly lower 10y postoperatively, compared with preoperative values (0-2 mmΔ=-1.62, 2-6 mmΔ=-1.24, P<0.01). There were no correlations between CD values and factors evaluated. CONCLUSION: SMILE is a safe and efficient procedure for myopia on a long-term basis. CD values get lower 10y postoperatively, whose mechanism is to be further discussed.

20.
Int Orthop ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713287

ABSTRACT

PURPOSE: It is still controversial whether complete displaced mid-shaft clavicle fractures should be treated with internal fixation or conservative therapy. This retrospective study aims to compare clinical outcomes of two treatment protocols. MATERIALS AND METHODS: 105 patients with displaced and comminuted mid-shaft clavicle fractures were included in this study, among which 55 patients were treated conservatively and 50 patients accepted surgical fixation and were followed up for over 20 months on average. Rate of union, malunion, time taken for union, functional outcome, self-reported satisfaction and complications were compared. RESULTS: Union rate of operative group (n=49, 98.0%) was higher than the non-operative group (n=48, 87.3%). Time taken for union in operative group (2.37±1.06 months) was shorter than the non-operative group (3.69±1.01 months). Malunion and asymmetric were only seen in the conservative group. Numbness of the shoulder was only reported in the operative group (n=23, 46.0%). Most of patients in the operative group (n=45, 90%) accepted a second operation to remove the implant. No statistically difference was found in self-reported satisfaction, Quick-DASH and Constant-Murley score. The operative group returned to work faster (1.47±0.89 to 3.34±1.37 months), regained full range of motion earlier (1.66±0.78 to 3.83±1.24 months) and regained strength faster (3.86±2.45 to 8.03±2.78 months) than the non-operative group. CONCLUSION: Complete displaced and comminuted mid-shaft clavicle fractures treated surgically have more reliable union and faster recovery when compared to conservatively treated fractures.

SELECTION OF CITATIONS
SEARCH DETAIL
...