Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
Transl Lung Cancer Res ; 13(6): 1247-1263, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38973966

ABSTRACT

Background: No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced NSCLC who received ICI therapy. Methods: Data of 179 patients with advanced NSCLC (stages IIIB-IV) from two institutions (Database 1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing dataset. Features were selected from computed tomography (CT) images before and 6-8 weeks after ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics features were defined as the relative net change of radiomics features between two time points. Prognostic models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics model were established as well. Results: The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4-13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics features yielded Harrell's concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9-23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients' stratification ability. Conclusions: The delta-radiomics model showed a good performance in predicting therapeutic outcomes in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and the pre-treatment radiomics models.

2.
J Ethnopharmacol ; 334: 118533, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971347

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum Indicum L., is a popular traditional Chinese medicine (TCM) for treatment of inflammatory diseases in China. FCI is also a functional food, and is widely used as herbal tea for clearing heat and detoxicating. AIM OF THE STUDY: To explore quality control markers of FCI based on the optimal harvest period. MATERIALS AND METHODS: First, UPLC-Q-TOF/MS based untargeted metabolomics was applied to explore the chemical profiles of FCIs collected at bud stages (BS), initial stages (IS), full bloom stages (FS) and eventual stages (ES) from eight cultivated regions in China. Subsequently, lipopolysaccharide (LPS)-induced RAW264.7 cell inflammatory model and carrageenan-induced rat paw edema model were used to confirm the anti-inflammatory effect of FCIs collected at IS/FS. Then, UPLC-PDA targeted metabolomics was used to quantitatively analyze 9 constituents with anti-inflammatory activity (7 flavonoids and 2 phenolic acids) changed significantly (VIP > 4) during flowering stages. Finally, ROC curves combined with PCA analysis based on the variation of 9 active constituents in FCIs from different flowering stages were applied to screen the quality markers of FCI. RESULTS: FCIs at IS/FS had almost same chemical characteristics, but quite different from those at BS and ES. A total of 32 constituents in FCIs including flavonoids and phenolic acids were changed during flowering development. Most of the varied constituents had the highest or higher contents at IS/FS compared with those at ES, indicating that the optimal harvest period of FCI should be at IS/FS. FCI extract could effectively suppress nitric oxide (NO) production in LPS-induced RAW264.7 cells and regulate the abnormal levels of cytokines and PGE2 in carrageenan-induced paw edema model rat. The results of quantitatively analysis revealed that the variation trends of phenolic acids and flavonoids in FCIs were different during flowering development, but most of them had higher contents at IS/FS than those at ES in all FCIs collected from eight cultivated regions, except one sample from Anhui. Finally, linarin, luteolin, apigenin and 3,5-dicaffeoylquinic acid were selected as the Q-markers based on the contribution of their AUC values in ROC and clustering of PCA analysis. CONCLUSIONS: Our study demonstrates the optimal harvest period of FCI and specifies the multi-constituents Q-markers of FCI based on the influence of growth progression on the active constituents using untargeted/targeted metabolomics. The findings not only greatly increase the utilization rate of FCI resources and improve quality control of FCI products, but also offer new strategy to identify the Q-markers of FCI.

3.
Int J Chron Obstruct Pulmon Dis ; 19: 1591-1601, 2024.
Article in English | MEDLINE | ID: mdl-39005647

ABSTRACT

Background: Exercise is an indispensable component of pulmonary rehabilitation with strong anti-inflammatory effects. However, the mechanisms by which exercise prevents diaphragmatic atrophy in COPD (chronic obstructive pulmonary disease) remain unclear. Methods: Forty male C57BL/6 mice were assigned to the control (n=16) and smoke (n=24) groups. Mice in the smoke group were exposed to the cigarette smoke (CS) for six months. They were then divided into model and exercise training groups for 2 months. Histological changes were observed in lung and diaphragms. Subsequently, agonist U46639 and antagonist Y27632 of RhoA/ROCK were subjected to mechanical stretching in LPS-treated C2C12 myoblasts. The expression levels of Atrogin-1, MuRF-1, MyoD, Myf5, IL-1ß, TNF-α, and RhoA/ROCK were determined by Western blotting. Results: Diaphragmatic atrophy and increased RhoA/ROCK expression were observed in COPD mice. Exercise training attenuated diaphragmatic atrophy, decreased the expression of MuRF-1, and increased MyoD expression in COPD diaphragms. Exercise also affects the upregulation of RhoA/ROCK and inflammation-related proteins. In in vitro experiments with C2C12 myoblasts, LPS remarkably increased the level of inflammation and protein degradation, whereas Y27632 or combined with mechanical stretching prevented this phenomenon considerably. Conclusion: RhoA/ROCK plays an important role in the prevention of diaphragmatic atrophy in COPD.


Subject(s)
Diaphragm , Disease Models, Animal , Mice, Inbred C57BL , Muscular Atrophy , Pulmonary Disease, Chronic Obstructive , Signal Transduction , rho-Associated Kinases , rhoA GTP-Binding Protein , Animals , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , rho-Associated Kinases/metabolism , Male , Muscular Atrophy/prevention & control , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Muscular Atrophy/etiology , rhoA GTP-Binding Protein/metabolism , Diaphragm/metabolism , Diaphragm/physiopathology , Diaphragm/pathology , Cell Line , rho GTP-Binding Proteins/metabolism , Exercise Therapy/methods , Mice , Lung/pathology , Lung/metabolism , Lung/physiopathology , Inflammation Mediators/metabolism , Physical Conditioning, Animal
4.
Bioact Mater ; 40: 430-444, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39007059

ABSTRACT

Irregular bone defects, characterized by unpredictable size, shape, and depth, pose a major challenge to clinical treatment. Although various bone grafts are available, none can fully meet the repair needs of the defective area. Here, this study fabricates a dough-type hydrogel (DR-Net), in which the first dynamic network is generated by coordination between thiol groups and silver ions, thereby possessing kneadability to adapt to various irregular bone defects. The second rigid covalent network is formed through photocrosslinking, maintaining the osteogenic space under external forces and achieving a better match with the bone regeneration process. In vitro, an irregular alveolar bone defect is established in the fresh porcine mandible, and the dough-type hydrogel exhibits outstanding shape adaptability, perfectly matching the morphology of the bone defect. After photocuring, the storage modulus of the hydrogel increases 8.6 times, from 3.7 kPa (before irradiation) to 32 kPa (after irradiation). Furthermore, this hydrogel enables effective loading of P24 peptide, which potently accelerates bone repair in Sprague-Dawley (SD) rats with critical calvarial defects. Overall, the dough-type hydrogel with kneadability, space-maintaining capability, and osteogenic activity exhibits exceptional potential for clinical translation in treating irregular bone defects.

5.
Adv Healthc Mater ; : e2401555, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039990

ABSTRACT

The intricate nature of pain classification and mechanism constantly affects the recovery of diseases and the well-being of patients. Key medical challenges persist in devising effective pain management strategies. Therefore, a comprehensive review of relevant methods and research advancements in pain management is conducted. This overview covers the main categorization of pain and its developmental mechanism, followed by a review of pertinent research and techniques for managing pain. These techniques include commonly prescribed medications, invasive procedures, and noninvasive physical therapy methods used in rehabilitation medicine. Additionally, for the first time, a systematic summary of the utilization of responsive biomaterials in pain management is provided, encompassing their response to physical stimuli such as ultrasound, magnetic fields, electric fields, light, and temperature, as well as changes in the physiological environment like reactive oxygen species (ROS) and pH. Even though the application of responsive biomaterials in pain management remains limited and at a fundamental level, recent years have seen the examination and debate of relevant research findings. These profound discussions aim to provide trends and directions for future research in pain management.

6.
Biomater Adv ; 163: 213956, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39032433

ABSTRACT

Hyaluronic acid (HA) based nanogels showed effective intracellular delivery efficacy for anti-cancer and anti-inflammatory drugs, characterized by their ability targeting relevant cell receptors. In the present study, we demonstrate the ability of hyaluronic acid-polyethyleneimine (HA-PEI) nanogels as a promising dual-functional interfacial active for intra-articular injection to intervene arthritis. Nanomechanical measurements on both model substrates and human cartilage samples confirm that the HA-PEI nanogels can significantly improve interfacial lubrication, in comparison to HA molecules, or silica-based nanoparticles. We show that the Coefficient of Friction significantly decreases with a decreasing nanogel size. The exceptional lubricating performance, coupled with the proven drug delivery capability, evidences the great potential of nanoscopic hydrogels for early-stage arthritis treatment. The flexibility in choosing the chemical nature, molecular architecture, and structural characteristics of nanogels makes it possible to modulate both drug delivery kinetics and interfacial lubrication, thus representing an innovative approach to treat degenerative joint diseases.

7.
Environ Res ; 259: 119504, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945514

ABSTRACT

While treating zinc-containing wastewater, recovering zinc for reuse as a secondary resource has significant environmental and economic benefits. Herein, based on the alkali-activated tourmaline tailings geopolymers (TTG) after adsorption of zinc ions (Zn (II)), a series of new composites with in-situ construction ZnS nanoparticles on TTG (ZnS/TTG) were synthesized, and used as photocatalysts for the photodegradation of tetracycline hydrochloride (TCH) in solution. Specifically, ZnS nanoparticles were uniformly and stably distributed in the layered structure of TTG, interweaving with each other to generate an interfacial electric field, which could induce more photocarrier generation. Meanwhile, TTG acted as an electron acceptor to accelerate the electron transfer at the interface, thus enhancing the photodegradation activity for TCH. The active radical quenching experiments combined with the ESR indicated that the active species produced during the photocatalytic degradation of TCH by ZnS/TTG composites were •O2- and photogenerated h+. When the initial concentration of Zn (II) was 60 mg/L, the synthesized 60-ZnS/TTG composites (0.5 g/L) reached 91.53% degradation efficiency of TCH (10 mg/L) at pH = 6. Furthermore, the possible pathways and mechanism of 60-ZnS/TTG composites photodegraded TCH were revealed with the aid of degraded intermediates. This report not only proposed valuable references for reusing heavy metal ions and removing TCH from wastewater, but also provided promising ideas for realizing the conversion of used adsorbents into high-efficiency photocatalysts.

8.
J Hazard Mater ; 475: 134774, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38870850

ABSTRACT

Currently, the low cost and effective purification toward heavy metal ions in wastewater has garnered global attention. Herein, we used hydrothermal method to prepare highly dispersed calcium silicate hydrate in fluorite tailings. And the stacking thickness of calcium silicate hydrate layered morphology was less than 5 nm. For high concentration Cu2+ purification investigation in wastewater, we found that the equilibrium adsorption capacity reached 797.92 mg/g via the CSH with 3:2 Ca/Si molar ratio, be 1.43-21.8 times than that of reported data. Therein, the metal-metal exchange and deposition are the primary pathways for Cu2+ adsorption, and electrostatic attraction is the secondary pathway. And the relative ∼100 % removal rate of high-concentration Ni2+ and Cr3+ ions were confirmed via CSH prepared from different tailings. This method offers a cost-effective way to utilize tailings for preparing highly efficient adsorbents toward HMIs removal in wastewater.

9.
Food Res Int ; 188: 114461, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823861

ABSTRACT

Myofibrillar proteins are crucial for gel formation in processed meat products such as sausages and meat patties. Freeze-thaw cycles can alter protein properties, impacting gel stability and product quality. This study aims to investigate the potential of thawed drip and its membrane-separated components as potential antifreeze agents to retard denaturation, oxidation and gel deterioration of myofibrillar proteins during freezing-thawing cycles of pork patties. The thawed drip and its membrane-separated components of > 10 kDa and < 10 kDa, along with deionized water, were added to minced pork at 10 % mass fraction and subjected to increasing freeze-thaw cycles. Results showed that the addition of thawed drip and its membrane separation components inhibited denaturation and structural changes of myofibrillar proteins, evidenced by reduced surface hydrophobicity and carbonyl content, increased free sulfhydryl groups, protein solubility and α-helix, as compared to the deionized water group. Correspondingly, improved gel properties including water-holding capacity, textural parameters and denser network structure were observed with the addition of thawed drip and its membrane separation components. Denaturation and oxidation of myofibrillar proteins were positively correlated with gel deterioration during freezing-thawing cycles. We here propose a role of thawed drip and its membrane separation components as cryoprotectants against myofibrillar protein gel deterioration during freeze-thawing cycles.


Subject(s)
Freezing , Gels , Muscle Proteins , Myofibrils , Animals , Gels/chemistry , Swine , Muscle Proteins/chemistry , Myofibrils/chemistry , Food Handling/methods , Protein Denaturation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Water/chemistry , Oxidation-Reduction
10.
BMC Pulm Med ; 24(1): 236, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745304

ABSTRACT

BACKGROUND: We studied whether the exercise improves cigarette smoke (CS) induced chronic obstructive pulmonary disease (COPD) in mice through inhibition of inflammation mediated by Wnt/ß-catenin-peroxisome proliferator-activated receptor (PPAR) γ signaling. METHODS: Firstly, we observed the effect of exercise on pulmonary inflammation, lung function, and Wnt/ß-catenin-PPARγ. A total of 30 male C57BL/6J mice were divided into the control group (CG), smoke group (SG), low-intensity exercise group (LEG), moderate-intensity exercise group (MEG), and high-intensity exercise group (HEG). All the groups, except for CG, underwent whole-body progressive exposure to CS for 25 weeks. Then, we assessed the maximal exercise capacity of mice from the LEG, MEG, and HEG, and performed an 8-week treadmill exercise intervention. Then, we used LiCl (Wnt/ß-catenin agonist) and XAV939 (Wnt/ß-catenin antagonist) to investigate whether Wnt/ß-catenin-PPARγ pathway played a role in the improvement of COPD via exercise. Male C57BL/6J mice were randomly divided into six groups (n = 6 per group): CG, SG, LiCl group, LiCl and exercise group, XAV939 group, and XAV939 and exercise group. Mice except those in the CG were exposed to CS, and those in the exercise groups were subjected to moderate-intensity exercise training. All the mice were subjected to lung function test, lung histological assessment, and analysis of inflammatory markers in the bronchoalveolar lavage fluid, as well as detection of Wnt1, ß-catenin and PPARγ proteins in the lung tissue. RESULTS: Exercise of various intensities alleviated lung structural changes, pulmonary function and inflammation in COPD, with moderate-intensity exercise exhibiting significant and comprehensive effects on the alleviation of pulmonary inflammation and improvement of lung function. Low-, moderate-, and high-intensity exercise decreased ß-catenin levels and increased those of PPARγ significantly, and only moderate-intensity exercise reduced the level of Wnt1 protein. Moderate-intensity exercise relieved the inflammation aggravated by Wnt agonist. Wnt antagonist combined with moderate-intensity exercise increased the levels of PPARγ, which may explain the highest improvement of pulmonary function observed in this group. CONCLUSIONS: Exercise effectively decreases COPD pulmonary inflammation and improves pulmonary function. The beneficial role of exercise may be exerted through Wnt/ß-catenin-PPARγ pathway.


Subject(s)
Mice, Inbred C57BL , PPAR gamma , Physical Conditioning, Animal , Pulmonary Disease, Chronic Obstructive , Wnt Signaling Pathway , Animals , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/metabolism , Male , Wnt Signaling Pathway/physiology , Mice , Physical Conditioning, Animal/physiology , PPAR gamma/metabolism , Disease Models, Animal , Lung/metabolism , Lung/physiopathology , Inflammation/metabolism
11.
J Thorac Dis ; 16(4): 2296-2313, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38738222

ABSTRACT

Background: Spread through air space (STAS) is currently considered to be a significant predictor of a poor outcome of pulmonary adenocarcinoma. Preoperative prediction of STAS is of great importance for treatment planning. The aim of the present study was to establish a nomogram based on computed tomography (CT) features for predicting STAS in lung adenocarcinoma and to assess the prognosis of the patients with STAS. Methods: A retrospective cohort study was performed in Wuhan Union Hospital from December 2015 to March 2021. The sample was divided into training and testing cohorts. Clinicopathologic and radiologic variables were recorded. The independent risk factors for STAS were determined by stepwise regression and then incorporated into the nomogram. Receiver operating characteristic (ROC) curves and calibration curves analysed by the Hosmer-Lemeshow test were used to evaluate the performance of the model. Decision curve analysis (DCA) was conducted to determine the clinical value of the nomogram. The Kaplan-Meier method was used for survival analysis and the multivariable Cox proportional hazards regression model was used to identify independent predictors for recurrence-free survival (RFS) and overall survival (OS). Results: The sample included 244 patients who underwent surgical resection for primary lung adenocarcinoma. The training cohort included 199 patients (68 STAS-positive and 131 STAS-negative patients), and the testing cohort included 45 patients (15 STAS-positive and 30 STAS-negative patients). The preoperative CT features associated with STAS were shape, ground-glass opacity (GGO) ratio and spicules. The nomogram including these three factors had good discriminative power, and the areas under the ROC curve were 0.875 and 0.922 for the training and testing data sets, respectively, with well-fitted calibration curves. DCA showed that the nomogram was clinically useful. STAS-positive patients had significantly worse OS and RFS than STAS-negative patients (both P<0.01). OS and RFS at 5-year for STAS-positive patients were 63.1% and 59.5%, respectively. Multivariate analysis showed that age [hazard ratio (HR), 1.1; 95% confidence interval (CI): 1.035-1.169; P=0.002], diameter (HR, 1.06; 95% CI: 1.04-1.11; P=0.03) and surgical margin (HR, 32.8; 95% CI: 6.8-158.3; P<0.001) were independent risk factors for OS. Adjuvant therapy (HR, 7.345; 95% CI: 2.52-21.41; P<0.001), N stage (N2) (HR, 0.239; 95% CI: 0.069-0.828; P=0.02) and surgical margin (HR, 15.6; 95% CI: 5.9-41.1; P<0.001) were found to be independent risk factors for RFS. Conclusions: The outcome of STAS-positive patients was worse. The nomogram incorporating the identified CT features could be applied to facilitate individualized preoperative prediction of STAS and selection of rational therapy.

12.
Medicine (Baltimore) ; 103(15): e37829, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608062

ABSTRACT

In this paper, our objective was to investigate the potential mechanisms of Actinidia chinensis Planch (ACP) for breast cancer treatment with the application of network pharmacology, molecular docking, and molecular dynamics. "Mihoutaogen" was used as a key word to query the Traditional Chinese Medicine Systems Pharmacology database for putative ingredients of ACP and its related targets. DrugBank, GeneCards, Online Mendelian Inheritance in Man, and therapeutic target databases were used to search for genes associated with "breast cancer." Using Cytoscape 3.9.0 we then constructed the protein-protein interaction and drug-ingredient-target-disease networks. An enrichment analysis of Kyoto encyclopedia of genes and genomes pathway and gene ontology were performed to exploration of the signaling pathways associated with ACP for breast cancer treatment. Discovery Studio software was applied to molecular docking. Finally, the ligand-receptor complex was subjected to a 50-ns molecular dynamics simulation using the Desmond_2020.4 tools. Six main active ingredients and 176 targets of ACP and 2243 targets of breast cancer were screened. There were 118 intersections of targets for both active ingredients and diseases. Tumor protein P53 (TP53), AKT serine/threonine kinase 1 (AKT1), estrogen receptor 1 (ESR1), Erb-B2 receptor tyrosine kinase 2 (ERBB2), epidermal growth factor receptor (EGFR), Jun Proto-Oncogene (JUN), and Heat Shock Protein 90 Alpha Family Class A Member 1 (HSP90AA1) selected as the most important genes were used for verification by molecular docking and molecular dynamics simulation. The primary active compounds of ACP against breast cancer were predicted preliminarily, and its mechanism was studied, thereby providing a theoretical basis for future clinical studies.


Subject(s)
Actinidia , Breast Neoplasms , Humans , Female , Network Pharmacology , Breast Neoplasms/drug therapy , Molecular Docking Simulation , Databases, Genetic
13.
Food Res Int ; 184: 114256, 2024 May.
Article in English | MEDLINE | ID: mdl-38609234

ABSTRACT

Mycotoxins are important risk factors in beer. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed to determine 10 mycotoxins in beer within 6 min. The method is fast, efficient, and has a simple and quick sample preparation. Validation was conducted based on the performance standards specified in Commission Decision 657/2002/EC, and the results demonstrated excellent linearity (R2 > 0.99), repeatability (RSD < 5 %), quantification limits (0.005-20.246 µg/L), and recovery rates (77 %-118 %). The prevalence of the 10 mycotoxins in 96 beers purchased from the Chinese market was analyzed, and the exposure of the Chinese population to mycotoxins through beer consumption was assessed. Deoxynivalenol (DON) was detected in 93.75 % of the beers, and the incidence of fumonisins (FBs) and zearalenone (ZEN) exceeded 50 %. Beer intake contributed significantly to the exposure of aflatoxins (AFs) and DON, especially in males. Correlation analysis between mycotoxin content in beer, raw materials, and the brewing process revealed that the brewing process significantly affected the content of DON (P < 0.001), while auxiliary materials also had a significant impact on the content of FBs and DON (P < 0.001). This study holds great significance in producing higher quality and safer beer.


Subject(s)
Aflatoxins , Mycotoxins , Male , Humans , Beer , Chromatography, Liquid , Tandem Mass Spectrometry
14.
Plant J ; 119(1): 432-444, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38635415

ABSTRACT

Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.


Subject(s)
Hordeum , Plant Diseases , Plant Proteins , Thiamine , Hordeum/virology , Hordeum/genetics , Hordeum/metabolism , Thiamine/metabolism , Thiamine/biosynthesis , Plant Diseases/virology , Plant Diseases/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Luteovirus/physiology , Gene Expression Regulation, Plant , Viral Proteins/metabolism , Viral Proteins/genetics , Chloroplasts/metabolism , Salicylic Acid/metabolism , Host-Pathogen Interactions , Disease Resistance/genetics
15.
Food Chem X ; 22: 101301, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38559440

ABSTRACT

In this study, liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to analyze the prevalence of 10 mycotoxins in 140 samples from the Chinese market, aiming to assess the exposure of Chinese individuals to these mycotoxins through the consumption of wine, baijiu, and huangjiu. Mycotoxins were detected in 98% of the samples, with fumonisins (FBs), deoxynivalenol (DON), and zearalenone (ZEN) exhibiting positive rates exceeding 50%. Regarding the exposure of the Chinese population to mycotoxins resulting from alcoholic beverage consumption, fruit wine intake made a relatively significant contribution to aflatoxin exposure, while baijiu showed a relatively significant contribution to ZEN exposure (1.84%). The analysis of the correlation between grape variety, wine region, and mycotoxin content demonstrated that FBs, ZEN, and DON were significantly influenced by grape variety and wine region. This research holds great significance in protecting human life and health, as well as in the production of safer alcoholic beverages.

16.
Food Chem ; 449: 139213, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38631134

ABSTRACT

This study took a novel approach to address the dual challenges of enhancing the ethanol content and aroma complexity in Laiyang pear wine. It focused on sorbitol as a pivotal element in the strategic selection of yeasts with specific sorbitol-utilization capabilities and their application in co-fermentation strategies. We selected two Saccharomyces cerevisiae strains (coded as Sc1, Sc2), two Metschnikowia pulcherrima (coded as Mp1, Mp2), and one Pichia terricola (coded as Tp) due to their efficacy as starter cultures. Notably, the Sc2 strain, alone or with Mp2, significantly increased the ethanol content (30% and 16%). Mixed Saccharomyces cerevisiae and Pichia terricola fermentation improved the ester profiles and beta-damascenone levels (maximum of 150%), while Metschnikowia pulcherrima addition enriched the phenethyl alcohol content (maximum of 330%), diversifying the aroma. This study investigated the efficacy of strategic yeast selection based on sorbitol utilization and co-fermentation methods in enhancing Laiyang pear wine quality and aroma.


Subject(s)
Fermentation , Flavoring Agents , Odorants , Pyrus , Saccharomyces cerevisiae , Sorbitol , Taste , Wine , Wine/analysis , Wine/microbiology , Pyrus/chemistry , Pyrus/microbiology , Pyrus/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/chemistry , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Sorbitol/metabolism , Sorbitol/analysis , Odorants/analysis , Ethanol/metabolism , Ethanol/analysis , Pichia/metabolism , Metschnikowia/metabolism , Fruit/chemistry , Fruit/microbiology , Fruit/metabolism
17.
Noise Health ; 26(120): 51-57, 2024.
Article in English | MEDLINE | ID: mdl-38570311

ABSTRACT

BACKGROUND: Environmental noise damages the cardiovascular system and endangers human health. This study was conducted to analyze the relationship between noise exposure and prognosis of patients with heart failure and to provide a good strategy for disease treatment. METHODS AND MATERIALS: This study was a retrospective analysis. A total of 487 patients with heart failure admitted to Ganzhou People's Hospital from September 2021 to September 2023 were selected as research subjects, and they were divided into the low noise exposure group (<55 dB; group A) and the high noise exposure group (≥55 dB; group B) according to the noise exposure conditions. The baseline data and physiological indicators of the two groups were analyzed. RESULTS: In this study, 84 patients were included in group B, and the remaining 403 patients were included in group A. Group A had lower systolic pressure, diastolic pressure, heart rate, and respiratory rate compared to group B (P < 0.05). The serum B-type natriuretic peptide (BNP) level in group A was lower than that in group B (P < 0.001). Group B had significantly higher scores on the Self-rating Anxiety Scale (SAS) and Self-rating Depression Scale (SDS) compared to group A (P < 0.001). The noise level was correlated with SAS score, SDS score, and serum BNP level (all P < 0.001). CONCLUSION: The noise exposure is correlated with the prognosis of patients with heart failure, suggesting that active strategies should be adopted to reduce the impact of noise on their disease.


Subject(s)
Heart Failure , Natriuretic Peptide, Brain , Humans , Retrospective Studies , Prognosis
18.
Noise Health ; 26(120): 25-29, 2024.
Article in English | MEDLINE | ID: mdl-38570307

ABSTRACT

OBJECTIVE: To explore the effects of music nursing as a complementary therapy on anxiety, fatigue, and quality of life in children with acute leukemia (AL). METHODS: This study included 150 children with AL admitted to our hospital from August 2021 to August 2023 and divided them into two groups based on treatment: the control (n = 76, received routine nursing) and observation (n = 74, received music nursing on the basis of routine nursing) groups. Comparison of groups was performed in terms of general information, anxiety, fatigue, and quality of life at admission (T0) and 1 month after admission (T1). RESULTS: No significant differences were observed in the general data between the two groups (P > 0.05). Anxiety, fatigue, and quality of life of the two groups also showed no significant differences at T0 (P > 0.05). The observation group showed significantly lower anxiety than the control group at T1 (P < 0.05). At T1, the observation group exhibited a lower fatigue degree compared with the control group (P < 0.05). At T1, the observation group attained higher scores on physiological and emotional dimensions of the quality of life compared with the control group, and the differences were statistically significant (P < 0.05). CONCLUSION: Music nursing for AL children, which has a certain clinical application value, can effectively reduce their anxiety and fatigue and improve their quality of life.


Subject(s)
Complementary Therapies , Leukemia , Music Therapy , Music , Child , Humans , Quality of Life/psychology , Retrospective Studies , Anxiety/etiology , Anxiety/therapy , Leukemia/therapy , Music Therapy/methods , Fatigue/etiology , Fatigue/therapy
19.
Fitoterapia ; 175: 105947, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570097

ABSTRACT

Employing an MS/MS-based molecular networking-guided strategy, three new eudesmane-type sesquiterpenes (1-3) and one undescribed pseudoguaianolide sesquiterpene (8), along with four known eudesmane-type sesquiterpene lactones (4-7) were extracted and purified from the herbs of Carpesium abrotanoides L. Structural elucidation encompassed comprehensive spectroscopic analysis, NMR calculations, DP4+ analysis, and ECD calculations. The cytotoxicity activity of all isolates was evaluated against two human hepatoma carcinoma cells (HepG2 and Hep3B) in vitro. It was demonstrated that compounds 2 and 4 showed moderate cytotoxic against HepG2 and Hep3B cells. Furthermore, all compounds were evaluated for their acetylcholinesterase (AChE) inhibitory activity. Particularly noteworthy is that, in comparison to the positive control, compound 1 demonstrated significant AChE inhibition with an inhibition rate of 77.86%. In addition, the inhibitory mechanism of compound 1 were investigated by in silico docking analyze and molecular dynamic simulation.


Subject(s)
Antineoplastic Agents, Phytogenic , Asteraceae , Cholinesterase Inhibitors , Molecular Docking Simulation , Sesquiterpenes , Humans , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/isolation & purification , Cholinesterase Inhibitors/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Sesquiterpenes/chemistry , Molecular Structure , Asteraceae/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/isolation & purification , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Hep G2 Cells , Tandem Mass Spectrometry , Cell Line, Tumor , China , Acetylcholinesterase/metabolism
20.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L754-L769, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38625125

ABSTRACT

Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.


Subject(s)
Mitochondria , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/pathology , Pulmonary Disease, Chronic Obstructive/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Animals , Respiratory Mucosa/pathology , Respiratory Mucosa/metabolism , Epithelial Cells/pathology , Epithelial Cells/metabolism , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...