Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Res ; 32(6): 1119-1128, 2024.
Article in English | MEDLINE | ID: mdl-38827327

ABSTRACT

It has been shown that the high expression of human epididymis protein 4 (HE4) in most lung cancers is related to the poor prognosis of patients, but the mechanism of pathological transformation of HE4 in lung cancer is still unclear. The current study is expected to clarify the function and mechanism of HE4 in the occurrence and metastasis of lung adenocarcinoma (LUAD). Immunoblotting evaluated HE4 expression in lung cancer cell lines and biopsies, and through analysis of The Cancer Genome Atlas (TCGA) dataset. Frequent HE4 overexpression was demonstrated in LUAD, but not in lung squamous cell carcinoma (LUSC), indicating that HE4 can serve as a biomarker to distinguish between LUAD and LUSC. HE4 knockdown significantly inhibited cell growth, colony formation, wound healing, and invasion, and blocked the G1-phase of the cell cycle in LUAD cell lines through inactivation of the EGFR signaling downstream including PI3K/AKT/mTOR and RAF/MAPK pathways. The first-line EGFR inhibitor gefitinib and HE4 shRNA had no synergistic inhibitory effect on the growth of lung adenocarcinoma cells, while the third-line EGFR inhibitor osimertinib showed additive anti-proliferative effects. Moreover, we provided evidence that HE4 regulated EGFR expression by transcription regulation and protein interaction in LUAD. Our findings suggest that HE4 positively modulates the EGFR signaling pathway to promote growth and invasiveness in LUAD and highlight that targeting HE4 could be a novel strategy for LUAD treatment.


Subject(s)
Adenocarcinoma of Lung , Cell Proliferation , ErbB Receptors , Lung Neoplasms , Neoplasm Invasiveness , Signal Transduction , WAP Four-Disulfide Core Domain Protein 2 , Humans , ErbB Receptors/metabolism , ErbB Receptors/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , WAP Four-Disulfide Core Domain Protein 2/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Cell Line, Tumor , Gene Knockdown Techniques , Animals , Mice , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Proteins/metabolism , Proteins/genetics
2.
Sci Rep ; 12(1): 18830, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335201

ABSTRACT

Mutations in isocitrate dehydrogenase (IDH) are frequently found in low-grade gliomas, secondary glioblastoma, chondrosarcoma, acute myeloid leukemias, and intrahepatic cholangiocarcinoma. However, the molecular mechanisms of how IDH2 mutations induce carcinogenesis remain unclear. Using overlapping PCR, transfection, immunoblotting, immunoprecipitation, measurements of enzyme activity, glucose, lactic acid, ATP, and reactive oxygen species (ROS), cell viability, protein degradation assays post-inhibition of the 26S proteasome (bortezomib) or HSP90 (17-AAG), and a homology model, we demonstrated that the properties of ten cancer-associated IDH2 variants (R140G/Q/W and R172S/K/M/W/G/C/P) arising from point mutations are closely related to their structure and stability. Compared with wild-type IDH2, the R172 and R140 point mutations resulted in a decrease in IDH2 activity, ROS, and lactate levels and an increase in glucose and ATP levels under normal and hypoxic conditions, indicating that mutant IDH2 increases cell dependency on mitochondrial oxidative phosphorylation, and reduces glycolysis under hypoxia. Overexpression of most of IDH2 point mutants showed anti-proliferative effects in the 293T and BV2 cell lines by inhibition of PI3K/AKT signaling and cyclin D1 expression and/or induced the expression of TNF-α and IL-6. Furthermore, bortezomib treatment resulted in dramatic degradation of IDH2 mutants, including R140G, R140Q, R140W, R172S and R172K, whereas it had little impact on the expression of WT and other mutants (R172M, R172W, R172G, R172C and R172P). In addition, targeting HSP90 minimally affected the expression of mutated IDH2 due to a lack of interaction between HSP90 and IDH2. The homology model further revealed that changes in conformation and IDH2 protein stability appeared to be associated with these point mutations. Taken together, our findings provide information important for understanding the molecular mechanisms of IDH2 mutations in tumors.


Subject(s)
Bone Neoplasms , Glioma , Humans , Isocitrate Dehydrogenase/metabolism , Point Mutation , Bortezomib , Reactive Oxygen Species , Phosphatidylinositol 3-Kinases/genetics , Glioma/pathology , Mutation , Glucose , Adenosine Triphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...