Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Antimicrob Agents ; : 107275, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002700

ABSTRACT

Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.

2.
Article in English | MEDLINE | ID: mdl-38997220

ABSTRACT

OBJECTIVES: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a major nosocomial infectious pathogen with rapidly increasing prevalence. The genomic epidemiological characteristics of CRKP nationwide, especially the evolving trends within the predominant clones, should be evaluated clearly. METHODS: We collected 3415 K. pneumoniae strains from 28 hospitals across China. Antimicrobial susceptibility testing and WGS were performed. Subsequent genomic analyses, including sequence typing, K-locus (KL) identification, antimicrobial resistance gene screening, and virulence score assessment were performed. The phylogenetic relationship of clonal group 11 was determined based on core-genome analysis, and the presence of the pLVPK-like virulence plasmid in ST11 isolates was confirmed using plasmid core-gene analysis. Additionally, the trends of the ST11 lineage with different KL types on a global scale were investigated using Beast2. RESULTS: Of the K. pneumoniae strains, 708 were identified as CRKP isolates (20.7%), of which 97.7% were MDR. ST11 was the predominant clone, and KPC-2 was the prevalent carbapenemase in China, although the prevalence of specific clones and carbapenemases varied by geographic region. Among ST11 isolates, KL47 and KL64 were the predominant KL types, and KL64 gradually replaced KL47, with a higher percentage of KL64 isolates harbouring the pLVPK-like plasmid. Global genome data showed a significant increase in the effective population size of KL64 over the last 5 years. CONCLUSIONS: The prevalence of CRKP was very high in certain regions in China. The increasing convergence of virulence and resistance, particularly in ST11-KL64 isolates, should be given more attention and further investigation.

3.
Microbiol Spectr ; 12(7): e0429923, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38847538

ABSTRACT

Patients with hematological diseases are considered to be at high risk for intestinal colonization by carbapenem-resistant Gram-negative bacteria (CR-GNB). However, the epidemiological data regarding risk factors and molecular characteristics of intestinal colonized CR-GNB isolates in this population are insufficient in China. A multicenter case‒control study involving 4,641 adult patients with hematological diseases from 92 hospitals across China was conducted. Following culture of collected rectal swabs, mass spectrometry and antimicrobial susceptibility tests were performed to identify GNB species and CR phenotype. Risk factors were assessed through retrospective clinical information. Whole-genome sequencing was used to analyze the molecular characteristics of CR-GNB isolates. This trial is registered with ClinicalTrials.gov as NCT05002582. Our results demonstrated that among 4,641 adult patients, 10.8% had intestinal colonization by CR-GNB. Of these, 8.1% were colonized by carbapenem-resistant Enterobacterales (CRE), 2.6% were colonized by carbapenem-resistant Pseudomonas aeruginosa (CRPA), and 0.3% were colonized by carbapenem-resistant Acinetobacter baumannii (CRAB). The risk factors for CR-GNB colonization include male gender, acute leukemia, hematopoietic stem cell transplantation, ß-lactam antibiotic usage, and the presence of non-perianal infections within 1 week. Compared with CRPA-colonized patients, patients using carbapenems were more likely to be colonized with CRE. NDM was the predominant carbapenemase in colonized CRE. This study revealed a high CR-GNB intestinal colonization rate among adult patients with hematological diseases in China, with CRE being the predominant one. Notably, a significant proportion of CRE exhibited metallo-ß-lactamase production, indicating a concerning trend. These findings emphasize the importance of active screening for CR-GNB colonization in patients with hematological diseases.IMPORTANCECarbapenem-resistant Gram-negative bacteria (CR-GNB) has emerged as a significant threat to public health. Patients with hematological diseases are at high risk of CR-GNB infections due to their immunosuppressed state. CR-GNB colonization is an independent risk factor for subsequent infection. Understanding the risk factors and molecular characteristics of CR-GNB associated with intestinal colonization in patients with hematological diseases is crucial for empirical treatment, particularly in patients with febrile neutropenia. However, the epidemiology data are still insufficient, and our study aims to determine the intestinal colonization rate of CR-GNB, identify colonization risk factors, and analyze the molecular characteristics of colonized CR-GNB isolates.


Subject(s)
Anti-Bacterial Agents , Carbapenems , Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Hematologic Diseases , Humans , Case-Control Studies , Male , Female , Risk Factors , Middle Aged , Carbapenems/pharmacology , Adult , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , China/epidemiology , Aged , Anti-Bacterial Agents/pharmacology , Hematologic Diseases/complications , Hematologic Diseases/microbiology , Hematologic Diseases/epidemiology , Molecular Epidemiology , Retrospective Studies , Microbial Sensitivity Tests , Young Adult , Intestines/microbiology , Adolescent , Aged, 80 and over
4.
Article in English | MEDLINE | ID: mdl-38777180

ABSTRACT

As a widely spread Gram-negative bacteria, klebsiella pneumoniae mainly causes acquired infections in hospitals, such as lung infections, urinary tract infections, bloodstream infections, etc. In recent years, the number of multidrug-resistant K. pneumoniae strains has increased dramatically, posing a great threat to human health. Carbapenem-resistant Klebsiella pneumoniae (CRKP) can be colonized in human body, especially in gastrointestinal tract, and some colonized patients can be infected during hospitalization, among which invasive operation, underlying disease, admission to intensive care unit, antibiotic use, severity of the primary disease, advanced age, operation, coma and renal failure are common risk factors for secondary infection. Active screening and preventive measures can effectively prevent the occurrence of CRKP infection. Based on the epidemiological status, this study aims to discuss the correlation between colonization and secondary infection induced by carbapenem-resistant Klebsiella pneumoniae and risk factors for their happening, and provide some reference for nosocomial infection prevention and control.

5.
Sci Rep ; 14(1): 11462, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769348

ABSTRACT

Einstein-Podolsky-Rosen (EPR) steering is commonly shared among multiple observers by utilizing unsharp measurements. Nevertheless, their usage is restricted to local measurements and does not encompass all nonlocal measurement-based cases. In this work, a method for finding beneficial local measurement settings has been expanded to include nonlocal measurement cases. This method is applicable for any bipartite state and offers benefits even in scenarios with a high number of measurement settings. Using the Greenberger-Horne-Zeilinger state as an illustration, we show that employing unsharp nonlocal measurements can activate the phenomenon of steering sharing in contrast to using local measurements. Furthermore, our findings demonstrate that nonlocal measurements with unequal strength possess a greater activation capability compared to those with equal strength. Our activation method generates fresh concepts for conservation and recycling quantum resources.

6.
mSystems ; 9(2): e0092423, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38193706

ABSTRACT

The threat posed by Klebsiella pneumoniae in healthcare settings has worsened due to the evolutionary advantages conferred by blaKPC-2-harboring plasmids (pKPC-2). However, the specific evolutionary pathway of nosocomial K. pneumoniae carrying pKPC-2 and its transmission between patients and healthcare environments are not yet well understood. Between 1 August and 31 December 2019, 237 ST11 KPC-2-producing-carbapenem-resistant K. pneumoniae (CRKP) (KPC-2-CRKP) were collected from patient or ward environments in an intensive care unit and subjected to Illumina sequencing, of which 32 strains were additionally selected for Nanopore sequencing to obtain complete plasmid sequences. Bioinformatics analysis, conjugation experiments, antimicrobial susceptibility tests, and virulence assays were performed to identify the evolutionary characteristics of pKPC-2. The pKPC-2 plasmids were divided into three subgroups with distinct evolutionary events, including Tn3-mediated plasmid homologous recombination, IS26-mediated horizontal gene transfer, and dynamic duplications of antibiotic resistance genes (ARGs). Surprisingly, the incidence rates of multicopy blaKPC-2, blaSHV-12, and blaCTX-M-65 were quite high (ranging from 27.43% to 67.01%), and strains negative for extended-spectrum ß-lactamase tended to develop multicopy blaKPC-2. Notably, the presence of multicopy blaSHV-12 reduced sensitivity to ceftazidime/avibactam (CZA), and the relative expression level of blaSHV-12 in the CZA-resistant group was 6.12 times higher than that in the sensitive group. Furthermore, a novel hybrid pKPC-2 was identified, presenting enhanced virulence levels and decreased susceptibility to CZA. This study emphasizes the notable prevalence of multicopy ARGs and provides a comprehensive insight into the intricate and diverse evolutionary pathways of resistant plasmids that disseminate among patients and healthcare environments.IMPORTANCEThis study is based on a CRKP screening program between patients and ward environments in an intensive care unit, describing the pKPC-2 (blaKPC-2-harboring plasmids) population structure and evolutionary characteristics in clinical settings. Long-read sequencing was performed in genetically closely related strains, enabling the high-resolution analysis of evolution pathway between or within pKPC-2 subgroups. We revealed the extremely high rates of multicopy antibiotic resistance genes (ARGs) in clinical settings and its effect on resistance profile toward novel ß-lactam/ß-lactamase inhibitor combinations, which belongs to the last line treatment choices toward CRKP infection. A novel hybrid pKPC-2 carrying CRKP with enhanced resistance and virulence level was captured during its clonal spread between patients and ward environment. These evidences highlight the threat of pKPC-2 to CRKP treatment and control. Thus, surveillance and timely disinfection in clinical settings should be practiced to prevent transmission of CRKP carrying threatful pKPC-2. And rational use of antibiotics should be called for to prevent inducing of pKPC-2 evolution, especially the multicopy ARGs.


Subject(s)
Cross Infection , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Klebsiella/genetics , Klebsiella Infections/drug therapy , Cross Infection/epidemiology , Virulence/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Carbapenems/pharmacology
7.
Infect Drug Resist ; 16: 7621-7628, 2023.
Article in English | MEDLINE | ID: mdl-38107435

ABSTRACT

Purpose: We aimed to characterize a novel blaNDM-5 and blaKPC-2 co-carrying hybrid plasmid from a clinical carbapenem-resistant Klebsiella pneumoniae (CRKP) strain. Methods: Antimicrobial susceptibility was determined by the broth microdilution method. Plasmid size and localization were estimated using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting. Plasmid transfer ability was evaluated by conjugation experiments. Whole genome sequencing (WGS) was performed using Illumina NovaSeq6000 and Oxford Nanopore MinION platforms. Genomic characteristics were analyzed using bioinformatics methods. Results: Strain ZY27320 was a multidrug-resistant (MDR) clinical ST11 K. pneumoniae strain that confers high-level resistance to carbapenems (meropenem, MIC 128 mg/L; imipenem, MIC 64 mg/L) and ceftazidime/avibactam (MIC >128/4 mg/L). Both S1-PFGE-Southern blotting and whole genome sequencing revealed that the carbapenemase genes blaKPC-2 and blaNDM-5 were carried by the same IncFIIpHN7A8:IncR:IncN hybrid plasmid (pKPC2_NDM5). Conjugation experiments indicated that pKPC2_NDM5 was a non-conjugative plasmid. Conclusion: This is the first report of a hybrid plasmid carrying both carbapenemase genes blaNDM-5 and blaKPC-2 in a clinical K. pneumoniae ST11 isolate that confers resistance to both ceftazidime/avibactam and carbapenems, thereby presenting a serious threat to treatment in clinical practice.

8.
Int J Biol Macromol ; 251: 126191, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573918

ABSTRACT

Sorption dehumidification, as an energy-saving and eco-friendly approach, has been emerging in application for air dehumidification. Here, a prospective method is proposed to prepare biomass-based hygroscopic aerogels that are easily applicable, sustainable, high-efficient, and recyclable. The chitosan-based aerogel with a porous and hydrophilic network acts as the carrier and water reservoir for the uniformly distributed lithium chloride hygroscopic salt, and provides the hygroscopic salt with more liberal water channels to facilitate moisture capture and transfer. As a consequence, the prepared chitosan/polyvinyl alcohol@lithium chloride (chitosan/PVA@LiCl) hygroscopic aerogel exhibits an excellent moisture absorption capacity of up to 2.77 g g-1 at a relative humidity of 90 %. Meanwhile, as the chitosan/PVA@LiCl aerogel is set in a closed space about 2200 times larger than its own volume, the relative humidity can be reduced from 90 % to 32 % within 2 h, and further lower to 25 % after 4 h. Furthermore, combined with multi-walled carbon nanotubes, the photothermal hygroscopic aerogel is obtained that can rapidly desorb water under sunlight, thus to realize energy-free cycle. Overall, the renewable biomass-based aerogel materials with the advantages of simple preparation and excellent hygroscopic performance provides a new path for the development of sorption dehumidification technology.

9.
Int J Antimicrob Agents ; 62(2): 106873, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37276893

ABSTRACT

Colistin resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP) poses health challenges. To investigate the prevalence and molecular characteristics of colistin-resistant CRKP, 708 isolates were collected consecutively from 28 tertiary hospitals in China from 2018 to 2019, and 14 colistin-resistant CRKP were identified. Two-component systems (TCSs) related to colistin resistance (PmrA/B, PhoP/Q, and CrrA/B), the negative regulator mgrB gene and mcr genes, were analysed using genomic sequencing. The relative expression of TCSs genes along with their downstream pmrC and pmrK genes was determined using quantitative real-time PCR (qRT‒PCR). A novel point mutation in PhoQ was confirmed by site-directed mutagenesis, and the subsequent transcriptome changes were analysed by RNA sequencing (RNA-Seq). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to detect modifications in lipid A. The results showed that only one isolate carried the mcr-8.1 gene, nine exhibited MgrB inactivation or absence, and three exhibited mutations in PmrB. One novel point mutation, L247P, in PhoQ was found to lead to a 64-fold increase in the minimum inhibitory concentration (MIC) of colistin. qRT‒PCR revealed overexpression of phoP/Q and pmrK in isolates with or without MgrB inactivation, and pmrB mutation resulted in overexpression of pmrA and pmrC. Furthermore, transcriptome analysis revealed that the PhoQ L247P novel point mutation caused upregulated expression of phoP/Q and its downstream operon pmrHFIJKLM. Meanwhile, the pmrA/B regulatory pathway did not evolve colistin resistance. Mass spectrometry analysis showed the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to lipid A in colistin-resistant isolates with absence of MgrB. These findings illustrate that the molecular mechanisms of colistin resistance in CRKP isolates are complex, and that MgrB inactivation or absence is the predominant molecular mechanism. Interventions should be initiated to monitor and control colistin resistance.


Subject(s)
Colistin , Klebsiella Infections , Humans , Colistin/pharmacology , Colistin/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Klebsiella pneumoniae , Prevalence , Lipid A/metabolism , Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Carbapenems/pharmacology , Carbapenems/metabolism , Microbial Sensitivity Tests , Klebsiella Infections/epidemiology
10.
Microbiol Spectr ; 11(3): e0355422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37125932

ABSTRACT

The coinfection process producing multiple species of pathogens provides a specific ecological niche for the exchange of genetic materials between pathogens, in which plasmids play a vital role in horizontal gene transfer, especially for drug resistance, but the underlying transfer pathway remains unclear. Interspecies communication of the plasmids associated with the transfer of third-generation cephalosporins, quinolones, and colistin resistance has been observed in simultaneously isolated Escherichia coli and Klebsiella pneumoniae from abdominal drainage following surgery. The MICs of antimicrobial agents were determined by the broth microdilution method. The complete chromosome and plasmid sequences were obtained by combining Illumina paired-end short reads and MinION long reads. S1-PFGE, southern blot analysis and conjugation assay confirmed the transferability of the mcr-1-harboring plasmid. Both the E. coli isolate EC15255 and K. pneumoniae isolate KP15255 from the same specimen presented multidrug resistance. Each of them harbored one chromosome and three plasmids, and two plasmids and their mediated resistance could be transferred to the recipient by conjugation. Comparison of their genome sequences suggested that several genetic communication events occurred between species, especially among their plasmids, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion. Exchange of plasmids or the genetic elements they harbor plays a critical role in antimicrobial resistance gene transmission and poses a substantial threat to nosocomial infection control, necessitating the continued surveillance of multidrug resistant pathogens, especially during coinfection. IMPORTANCE The genome sequence of bacterial pathogens commonly provides a detailed clue of genetic communication among clones or even distinct species. The intestinal microecological environment is a representative ecological niche for genetic communication. However, it is still difficult to describe the details of horizontal gene transfer or other genetic events within them because the evidence in the genome sequence is incomplete and limited. In this study, the simultaneously isolated Escherichia coli and Klebsiella pneumoniae from a coinfection process provided an excellent example for observation of interspecies communication between the two genomes and the plasmids they harbor. A complete genome sequence acquired by combining the Illumina and MinION sequencing platforms facilitated the understanding of genetic communication events, such as whole-plasmid transfer, insertion, deletion, amplification, or inversion, which contribute to antimicrobial resistance gene transmission and are a substantial threat to nosocomial infection control.


Subject(s)
Coinfection , Cross Infection , Escherichia coli Proteins , Klebsiella Infections , Quinolones , Humans , Escherichia coli/metabolism , Colistin , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Escherichia coli Proteins/genetics , Cephalosporins/pharmacology , Communication , Microbial Sensitivity Tests , beta-Lactamases/genetics , Drug Resistance, Bacterial/genetics
11.
Sci Rep ; 13(1): 3798, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882469

ABSTRACT

Multipartite quantum steering, a unique resource for asymmetric quantum network information tasks, is very fragile to the inevitable decoherence, which makes it useless for practical purposes. It is thus of importance to understand how it decays in the presence of noise channels. We study the dynamic behaviors of genuine tripartite steering, reduced bipartite steering, and collective steering of a generalized three-qubit W state when only one qubit interacts independently with the amplitude damping channel (ADC), phase damping channel (PDC) or depolarizing channel (DC). Our results provide the region of decoherence strength and state parameters that each type of steering can survive. The results show that these steering correlations decay the slowest in PDC and some non-maximally entangled states more robust than the maximally entangled ones. Unlike entanglement and Bell nonlocality, the thresholds of decoherence strength that reduced bipartite steering and collective steering can survive depend on the steering direction. In addition, we find that not only one party can be steered by a group system, but also two parties can be steered by a single system. There is a trade-off between the monogamy relation involving one steered party and two steered parties. Our work provides comprehensive information about the effect of decoherence on multipartite quantum steering, which will help to realize quantum information processing tasks in the presence of noise environments.

12.
Microbiol Spectr ; : e0401022, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36802220

ABSTRACT

This 4-month-long prospective observational study investigated the epidemiological characteristics, genetic composition, transmission pattern, and infection control of carbapenem-resistant Escherichia coli (CREC) colonization in patients at an intensive care unit (ICU) in China. Phenotypic confirmation testing was performed on nonduplicated isolates from patients and their environments. Whole-genome sequencing was performed for all E. coli isolates, followed by multilocus sequence typing (MLST), and antimicrobial resistance genes and single nucleotide polymorphisms (SNPs) were screened. The colonization rates of CREC were 7.29% from the patient specimens and 0.39% from the environmental specimens. Among the 214 E. coli isolates tested, 16 were carbapenem resistant, with the blaNDM-5 gene identified as the dominant carbapenemase-encoding gene. Among the low-homology sporadic strains isolated in this study, the main sequence type (ST) of carbapenem-sensitive Escherichia coli (CSEC) was ST1193, whereas the majority of CREC isolates belonged to ST1656, followed by ST131. CREC isolates were more sensitive to disinfectants than were the carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates obtained in the same period, which may explain the lower separation rate. Therefore, effective interventions and active screening are beneficial to the prevention and control of CREC. IMPORTANCE CREC represents a public health threat worldwide, and its colonization precedes or occurs simultaneously with infection; once the colonization rate increases, the infection rate rises sharply. In our hospital, the colonization rate of CREC remained low, and almost all of the CREC isolates detected were ICU acquired. Contamination of the surrounding environment by CREC carrier patients shows a very limited spatiotemporal distribution. As the dominant ST of the CSEC isolates found, ST1193 CREC might be considered a strain of notable concern with potential to cause a future outbreak. ST1656 and ST131 also deserve attention, as they comprised the majority of the CREC isolates found, while blaNDM-5 gene screening should play an important role in medication guidance as the main carbapenem resistance gene identified. The disinfectant chlorhexidine, which is used commonly in the hospital, is effective for CREC rather than CRKP, possibly explaining the lower positivity rate for CREC than for CRKP.

13.
Water Res ; 232: 119684, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36758352

ABSTRACT

Leakage of oils and organic solvents poses a significant threat to aquatic environments. Here, low-temperature carbonized aerogels with highly porous and anisotropic structures obtained only from biomass-derived materials were proposed to absorb polymorphic oils from contaminated water. Specifically, carbonized aerogels prepared at temperatures of 300 °C and 350 °C exhibited ultra-high absorption capacities (40‒125 g g-1) and oil-water separation efficiencies (> 99%) even in harsh environments, which were attributed to their exceptional properties, including high porosity, abundant macropores, excellent thermal stability, and hydrophobicity. Through citric acid crosslinking and low-temperature carbonization, the aerogels exhibited superior compression elasticity and could be cyclically utilized through simple extrusion while realizing the recovery of oils. Moreover, the outstanding photothermal conversion properties obtained through carbonization contributed to the high temperature and fluidity of the oils surrounding the aerogels, which is crucial for improving the absorption performance of high-viscosity oils. Such absorbent materials are used to separate crude oil from oil-water mixtures, which can achieve maximum absorption of 56 g g-1 and increase the absorption rate (from several days to 10 min) in a low-temperature (4 °C) seawater environment.


Subject(s)
Oils , Water , Biomass , Adsorption , Oils/chemistry , Solvents , Elasticity , Water/chemistry
14.
Sci Rep ; 12(1): 20481, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36443637

ABSTRACT

Nonlocal quantum correlations, such as quantum entanglement, quantum steering, and Bell nonlocality, are crucial resources for quantum information tasks. How to protect these quantum resources from decoherence is one of the most urgent problems to be solved. Here, we investigate the evolution of these correlations in the correlated squeezed generalized amplitude damping (SGAD) channel and propose a scheme to protect them with weak measurement (WM) and quantum measurement reversal (QMR). Compared with the results of the uncorrelated SGAD channel, we find that when [Formula: see text], correlation and squeezing effects can prolong the survival time of quantum entanglement, Bell nonlocality, and quantum steering by about 152 times, 207 times, and 10 times, respectively. In addition, local WM and QMR can effectively recover the disappeared nonlocal quantum correlations either in uncorrelated or completely correlated SGAD channels. Moreover, we find that these initial nonlocal quantum correlations could be drastically amplified under the correlated channel. And the steering direction can be flexibly manipulated either by changing the channel parameters or the strength of WM and QMR. These results not only make a step forward in suppressing decoherence and enhancing quantum correlation in noise channels, but also help to develop relevant practical applications.

15.
Antibiotics (Basel) ; 11(11)2022 Nov 13.
Article in English | MEDLINE | ID: mdl-36421260

ABSTRACT

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a common nosocomial pathogen causing severe infectious diseases, and ST307 CRKP is an emerging clone. In this study, we collected five ST307 CRKP isolates, evaluated their antimicrobial susceptibility using microbroth dilution, and their clonality and population structure by PFGE, cgMLST, and SNP-based phylogenetic analysis. Then, the genome characteristics, such as antimicrobial resistance genes and plasmid profiles, were studied by subsequent genomic analysis. The plasmid transfer ability was evaluated by conjugation, and the carbapenem resistance mechanism was elucidated by gene cloning. The results showed that all five ST307 CRKP isolates harboured blaCMY-6, blaOXA-48, and blaNDM-1; however, the end of the blaNDM-1 signal peptide was interrupted and truncated by an IS10 element, resulting in the deactivation of carbapenemase. The ST307 isolates were closely related, and belonged to the globally disseminated clade. blaOXA-48 and blaNDM-1 were located on the different mobilisable IncL/M- and IncA/C2-type plasmids, respectively, and either the pOXA-48 or pNDM-1 transconjugants were ertapenem resistant. Gene cloning showed that blaCMY-6 could elevate the MICs of carbapenems up to 64-fold and was located on the same plasmid as blaNDM-1. In summary, ST307 is a high-risk clone type, and its prevalence should be given additional attention.

16.
Opt Express ; 30(15): 28003-28013, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236957

ABSTRACT

Demonstrating quantum communication complexity superiority non-trivially with currently available experimental systems is of utmost importance in quantum information science. Here, we propose a generalized entanglement-assisted communication complexity reduction protocol and analyze the robustness of its quantum superiority against the measurement imperfections, such as measurement basis deviation and choice probability bias, a common problem rarely studied before. We find that the quantum superiority can be obtained in a specific entangled state in a suitable range of measurement basis and basis choice parameters. And the quantum superiority strengthens with the increase of the entanglement degree of quantum states. By using the maximum entangled state and its corresponding optimal measurement, the result we obtained violated the optimal classical bound by 239 standard deviations. Besides, the robustness of effective measurement basis in dephasing and depolarizing quantum channels is also investigated. These results not only make a step forward in investigating sufficient experimental conditions to unambiguously demonstrate the superiority of quantum communication complexity but also help to develop relevant practical applications.

17.
J Glob Antimicrob Resist ; 31: 309-315, 2022 12.
Article in English | MEDLINE | ID: mdl-36265800

ABSTRACT

OBJECTIVES: Given the increasing frequency of infections due to extended-spectrum ß-lactamase (EBSL)-producing Klebsiella pneumoniae in humans over recent decades, infection control against this pathogen is of high importance. METHODS: In this study, the transmission mode of ESBL-producing K. pneumoniae in neonatal intensive care units (NICU) was investigated. We collected K. pneumoniae isolates from patients admitted to the NICU and performed environmental screening of the NICU and nearby obstetrics department. All isolates were analysed using antimicrobial susceptibility testing, whole-genome sequencing, molecular typing, and antimicrobial and virulence determinant screening. The phylogenetic relationships of all the isolates were analysed using core-genome multi-locus sequence type and single-nucleotide polymorphism-based analysis, and their plasmids harbouring antimicrobial resistance genes in ST2407 were compared. RESULTS: Eighteen K. pneumoniae isolates were collected, of which 10 isolates from patients belonged to ST45 and ST2407, and eight isolates from the environment belonged to various other clones. Although 80% and 100% of isolates from patients were ESBL-positive (blaCTX-M-14 and blaCTX-M-55) and possessed siderophores, respectively; fewer environmental isolates harboured antimicrobial resistance and virulence genes. For both ST45 and ST2407 isolates, the phylogenetic assessment revealed a close relationship between clinical and environmental isolates, indicating that bloodstream infections were associated with the contaminated environments. CONCLUSIONS: Based on these results, the environmental prevalence of K. pneumoniae should be considered given its pathogenicity in humans. Early and active infection control measures could decrease the spread of multidrug-resistant K. pneumoniae.


Subject(s)
Intensive Care Units, Neonatal , Klebsiella Infections , Humans , Infant, Newborn , beta-Lactamases/genetics , Klebsiella Infections/epidemiology , Klebsiella Infections/transmission , Klebsiella pneumoniae , Phylogeny , Equipment Contamination
18.
Microbiol Spectr ; 10(4): e0257221, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35730968

ABSTRACT

Here, a program was designed to surveil the colonization and associated infection of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) (OXA-232-CRKP) in an intensive care unit (ICU) and to describe the epidemiological characteristics during surveillance. Samples were sourced from patient and environment colonization sites in the ICU from August to December 2019. During the surveillance, 106 OXA-232-CRKP strains were isolated from 8,656 samples of colonization sites, with an average positive rate of 1.22%. The rate from patient colonization sites was 3.59% (60/1,672 samples), over 5 times higher than that of the environment (0.66% [46/6,984 samples]). Rectal swabs and ventilator-related sites had the highest positive rates among patient and environment colonization sites, respectively. Six of the 15 patients who had OXA-232-CRKP at colonization sites suffered from OXA-232-CRKP-related infections. Patients could obtain OXA-232-CRKP from the environment, while long-term patient colonization was mostly accompanied by environmental colonization with subsequent infection. Antimicrobial susceptibility testing presented similar resistance profiles, in which all isolates were resistant to ertapenem but showed different levels of resistance to meropenem and imipenem. Whole-genome sequencing and single-nucleotide polymorphism (SNP) analysis suggested that all OXA-232-CRKP isolates belonged to the sequence type 15 (ST15) clone and were divided into two clades with 0 to 45 SNPs, sharing similar resistance genes, virulence genes, and plasmid types, indicating that the wide dissemination of OXA-232-CRKP between the environment and patients was due to clonal spread. The strains all contained ß-lactam resistance genes, including blaOXA-232, blaCTX-M-15, and blaSHV-106, and 75.21% additionally carried blaTEM-1. In brief, wide ST15 clonal spread and long-term colonization of OXA-232-CRKP between patients and the environment were observed, with microevolution and subsequent infection. IMPORTANCE OXA-232 is a variant of OXA-48 carbapenemase, which has been increasingly reported in nosocomial outbreaks in ICUs. However, the OXA-232-CRKP transmission relationship between the environment and patients in ICUs was still not clear. Our study demonstrated the long-term colonization of OXA-232-CRKP in the ICU environment, declared that the colonization was a potential risk to ICU patients, and revealed the possible threat that this OXA-232-CRKP clone would bring to public health. The wide dissemination of OXA-232-CRKP between the environment and patients was due to ST15 clonal spread, which presented a multidrug-resistant profile and carried disinfectant resistance genes and virulence clusters, posing a challenge to infection control. The study provided a basis for environmental disinfection, including revealing common environmental colonization sites of OXA-232-CRKP and suggesting appropriate usage of disinfectants to prevent the development of disinfectant resistance.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Cross Infection , Disinfectants , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Cross Infection/epidemiology , Humans , Klebsiella Infections/epidemiology , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics
19.
Int J Antimicrob Agents ; 59(5): 106573, 2022 May.
Article in English | MEDLINE | ID: mdl-35307563

ABSTRACT

Enterobacter spp. are members of the 'ESKAPE' group of pathogens, which which are recognised as the leading cause of multidrug-resistant (MDR) hospital-acquired infections. Colistin is usually regarded as a last-line therapeutic option for MDR Gram-negative bacilli infections. However, colistin-resistant Enterobacter spp. have emerged in the last decade. Here we investigated the prevalence of colistin resistance and mcr genes in Enterobacter spp. of clinical origin between 2011 and 2020 in a tertiary hospital in China. Colistin resistance rates ranged between 17.1% and 34.5%, with an overall prevalence of 22.2% (190/854). No mcr-1 to mcr-8 genes were identified in the colistin-resistant Enterobacter spp. isolates, while mcr-9 and mcr-10 were detected at rates of 8.4% (16/190) and 12.6% (24/190), respectively. All of the mcr-9/10-positive Enterobacter isolates belonged to the Enterobacter cloacae complex (ECC). Meanwhile, 14.8% (98/664) and 6.0% (40/664) of non-colistin-resistant Enterobacter spp. isolates carried mcr-9 and mcr-10 genes, respectively. For the 40 mcr-9/10-positive colistin-resistant ECC isolates, mcr-9-positive ECC isolates usually co-produced extended-spectrum ß-lactamases (ESBLs) or carbapenemases, while mcr-10-positive ECC isolates produced neither. Most mcr-9/10 genes were located on plasmids. The backbone of mcr-9-harbouring plasmids was conserved, while that of mcr-10-harbouring plasmids was diverse. Our findings revealed a high prevalence of colistin resistance and a silent distribution of mcr-9/10 genes in clinical Enterobacter spp. isolates in China. It is urgent to take steps and interventions to control the prevalence of colistin resistance and prevent the dissemination of mcr-9/10 genes.


Subject(s)
Colistin , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Enterobacter/genetics , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Prevalence , Tertiary Care Centers
20.
J Infect ; 84(5): 637-647, 2022 05.
Article in English | MEDLINE | ID: mdl-35301013

ABSTRACT

OBJECTIVES: To elucidate the predictors of carbapenem-resistant Klebsiella pneumoniae (CRKP) infection and help clinicians better identify CRKP infection at an early stage. METHODS: We conducted a multicentre case-control study of 422 patients with CRKP infection and 948 with carbapenem-susceptible K. pneumoniae (CSKP) infection from March to July 2017. Binary logistic regression was used to identify risk factors for CRKP infection. The subgroups of CRKP respiratory infection, intra-abdominal infection, and bloodstream infection were also evaluated. Patients were followed up for 28 days. Independent risk factors for 28-day crude mortality of CRKP infection were analysed using Cox proportional hazards regression models. RESULTS: Longer stay of hospitalization, stay in the intensive care unit (ICU), previous exposure to antibacterial agents (especially carbapenems, quinolones, aminoglycosides, and tigecycline), invasive procedures, intravascular catheter use, tracheotomy, and admission to ICU in the preceding 90 days were risk factors for CRKP infection. Carbapenem exposure was the only common predictor of different types of CRKP infection. The 28-day crude mortality of CRKP infection was 24.2% and was independently associated with sex, admitted unit, and type of infection. CONCLUSIONS: Strict policies for antibiotic use, cautious decisions regarding the implementation of invasive procedures, and careful management of patients with catheters, especially intravascular catheters, are necessary to handle CRKP infection.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Case-Control Studies , Cohort Studies , Drug Resistance, Bacterial , Humans , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...