Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 14(11)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-38004834

ABSTRACT

Electro-optic modulator (EOM) is one of the key devices of high-speed optical fiber communication systems and ultra-wideband microwave photonic systems. Silicon-organic hybrid (SOH) integration platform combines the advantages of silicon photonics and organic materials, providing a high electro-optic effect and compact structure for photonic integrated devices. In this paper, we present an SOH-integrated EOM with comprehensive investigation of EOM structure design, silicon waveguide fabrication with Slot structure, on-chip poling of organic electro-optic material, and characterization of EO modulation response. The SOH-integrated EOM is measured with 3 dB bandwidth of over 50 GHz and half-wave voltage length product of 0.26 V·cm. Furthermore, we demonstrate a microwave photonics phase shifter by using the fabricated SOH-integrated dual parallel Mach-Zehnder modulator. The phase shift range of 410° is completed from 8 GHz to 26 GHz with a power consumption of less than 38 mW.

2.
Opt Express ; 31(16): 26078-26091, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710477

ABSTRACT

We have designed and fabricated a hybrid integrated laser source with full C-band wavelength tunability and high-power output. The external cavity laser is composed of a gain chip and a dual micro-ring narrowband filter integrated on the silicon nitride photonic chip to achieve a wavelength tuning range of 55 nm and a SMSR higher than 50 dB. Through the integration of the semiconductor optical amplifier in the miniaturized package, the laser exhibits an output power of 220 mW and linewidth narrower than 8 kHz over the full C-band. Such a high-power, narrow-linewidth laser diode with a compact and low-cost design could be applied whenever coherence and interferometric resolutions are needed, such as silicon optical coherent transceiver module for space laser communication, light detection and ranging (LiDAR).

3.
Opt Lett ; 48(13): 3523-3526, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37390171

ABSTRACT

We demonstrate for the first time that optical rogue waves (RWs) can be generated using a chaotic semiconductor laser with energy redistribution. Chaotic dynamics are numerically generated using the rate equation model of an optically injected laser. The chaotic emission is then sent to an energy redistribution module (ERM) that consists of a temporal phase modulation and a dispersive propagation. The process enables a temporal energy redistribution of the chaotic emission waveforms, where coherent summation of consecutive laser pulses leads to random generation of giant intensity pulses. Efficient generation of optical RWs are numerically demonstrated by varying the ERM operating parameters in the entire injection parameter space. The effects of the laser spontaneous emission noise on the generation of RWs are further investigated. The RW generation approach offers a relatively high flexibility and tolerance in the choice of ERM parameters according to the simulation results.


Subject(s)
Lasers, Semiconductor , Physical Phenomena , Computer Simulation
4.
Micromachines (Basel) ; 14(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36838031

ABSTRACT

Photonic integration brings the promise of significant cost, power and space savings and propels the real applications of microwave photonic technology. In this paper, a multiband radio frequency (RF) signal simultaneous receiver using an optical bandpass filter (OBPF) integrated with a photodetector (PD) on a chip is proposed, which was experimentally demonstrated. The OBPF was composed of ring-assisted Mach-Zehnder interferometer with a periodical bandpass response featuring a box-like spectral shape. The OBPF was connected to a PD and then integrated onto a single silicon photonic chip. Phase-modulated multiband RF signals transmitted from different locations were inputted into the OBPF, by which one RF sideband was filtered out and the phase modulation to intensity modulation conversion was realized. The single sideband with carrier signals were then simultaneously detected by the PD. A proof-of-concept experiment with the silicon photonic integrated chip was implemented to simultaneously receive four channels of 8 GHz, 12 GHz, 14 GHz and 18 GHz in the X- and Ku-bands. The performance of the integrated microwave photonic multiband receiver-including the receiving sensitivity, the spurious free dynamic range, the gain and the noise figure across the whole operation frequency band-was characterized in detail.

5.
Biosens Bioelectron ; 154: 112039, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32056956

ABSTRACT

A label-free Au NPs-enhanced surface plasmon resonance (SPR) sensor was developed for the ultrasensitive detection of heparin based on competitive adsorption behavior of heparin and Au NPs on the poly (dimethyl-diallylammonium chloride) (PDDA)-modified optical fiber surface and the corresponding change in the resonance wavelength of SPR. Due to the high affinity between heparin and PDDA, the present senor shows good analytical performance with respect to heparin detection. Two obvious advantages of the proposed heparin sensor over other reported methods are: its much wider linear concentration range (10-6-10-10 g/mL) and lower limit of detection (0.0257 ng/mL). The analysis of heparin in serum demonstrated that the present sensor exhibited high sensitivity and selectivity. It should be noted that the sensing strategy takes advantage of a portable fiber-optic SPR sensing system and avoids the need for complex processes for labeled-Au NPs, and thus the present sensor promises to be a practical tool for the point-of-care monitoring of heparin.


Subject(s)
Biosensing Techniques , Fiber Optic Technology/methods , Heparin/isolation & purification , Metal Nanoparticles/chemistry , Gold/chemistry , Heparin/chemistry , Surface Plasmon Resonance
6.
ACS Sens ; 4(3): 704-710, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30785267

ABSTRACT

As a highly toxic heavy metal ion, divalent mercuric ion (Hg2+) is one of the most widely diffused and hazardous environmental pollutants. In this work, a simple, portable, and inexpensive fiber-optic sensor based on surface plasmon resonance (SPR) effect was developed for Hg2+ detection, which takes advantage of 4-mercaptopyridine (4-MPY)-functionalized Au nanoparticles (Au NPs/4-MPY) as a signal amplification tag. Based on the coordination between Hg2+ and nitrogen in the pyridine moiety, we developed the sensor by self-assembling 4-MPY on Au film surfaces to capture Hg2+ and then introducing Au NPs/4-MPY to generate a plasmonic coupling structure with the configuration of nanoparticle-on-mirror. The coupling between localized SPR increased changes in SPR wavelength, which allowed highly sensitive Hg2+ sensing in aqueous solution. The sensor exhibited superior selectivity for Hg2+ detection compared with other common metal ions in water. The sensor's Hg2+ detection limit is 8 nM under optimal conditions. Furthermore, we validated the sensor's practicality for Hg2+ detection in tap water samples and demonstrated its potential application for environmental water on-site monitoring.


Subject(s)
Gold/chemistry , Mercury/analysis , Metal Nanoparticles/chemistry , Optical Fibers , Pyridines/chemistry , Surface Plasmon Resonance/instrumentation , Drinking Water/chemistry , Limit of Detection
7.
Sensors (Basel) ; 18(12)2018 Dec 18.
Article in English | MEDLINE | ID: mdl-30567365

ABSTRACT

A tilted fiber Bragg grating (TFBG) hydrogen sensor coated with a palladium (Pd) membrane by the electroless plating method is proposed in this paper. A uniform layer of Pd metal is fabricated in aqueous solutions by the chemical coating method, which is used as the sensitive element to detect the change of the surrounding refractive index (SRI) caused by hydrogen absorption. The change in SRI causes an unsynchronized change of the cladding modes and the Bragg peak in the TFBG transmission spectrum, thereby eliminating the cross-sensitivity due to membrane expansion and is able to simultaneously monitor the presence of cracks in the pipe, as well as the hydrogen leakage. By subtracting the wavelength shift caused by fiber expansion, the change of SRI, i.e., the information from the H2 level, can be separately obtained. The drifted wavelength is measured for the H2 concentration below the hydrogen explosion limit between 1% and 4%. The chemical-based coating has the advantages of a low cost, a simple operation, and being suitable for coating on long fiber structures. The proposed sensor is able to detect the H2 signal in 5 min at a 1% H2 concentration. The proposed sensor is proved to be able to monitor the hydrogen level without the cross-sensitivity of temperature variation and expansion strains, so could be a good candidate for security applications in industry.

8.
Biosens Bioelectron ; 117: 637-643, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30005384

ABSTRACT

A highly sensitive surface plasmon resonance (SPR) sensor is reported for glucose detection using self-assembled p-mercaptophenylboronic acid (PMBA) monolayer on Au coated optical fibers. The cis-diol group of saccharides, such as for glucose, interacted with the self-assembled PMBA monolayers on the optical fibers, but the low molecular mass of glucose is insufficient for measuring a significant shift in SPR wavelength. The response for glucose was thus enhanced with Au nanoparticles (Au NPs) modified with 2-aminoethanethiol (AET) and PMBA. Selectivity was assured since glucose has the ability to capture the signal amplification tags (Au NPs/AET- PMBA) through secondary binding with another set of syn-periplanar diol groups and the PMBA on the gold surface. Accordingly, a glucose concentration-dependent sandwich structure was formed and the coupling between Au NPs and Au film results in the red shift of SPR resonance wavelength. The experimental results demonstrated that this SPR sensor responded to glucose within a range of 0.01-30 mM better than to fructose and galactose. The minimum concentration for quantify glucose is as low as 80 nM, which is lower than the physiological blood glucose level. Glucose was then accurately detected in urine sample, which indicated the potential application of the sensor for the analysis of glucose in urine. We believe that our proposed PMBA-modified single amplification tag and sensing principle can also be used for biomolecules consisting of carbohydrate structures, particularly for DNA-associated bioanalysis.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Glycosuria/urine , Surface Plasmon Resonance , Urinalysis/instrumentation , Urinalysis/methods , Boronic Acids/chemistry , Gold/chemistry , Humans , Metal Nanoparticles/chemistry
9.
Opt Lett ; 43(6): 1199-1202, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29543250

ABSTRACT

Low-power radio frequency (RF) signal detection is highly desirable for many applications, ranging from wireless communication to radar systems. A tunable optoelectronic oscillator (OEO) based on a phase-shifted fiber Bragg grating for detecting low-power RF signals is proposed and experimentally demonstrated. When the frequency of the input RF signal is matched with the potential oscillation mode of the OEO, it is detected and amplified. The frequency of the RF signal under detection can be estimated simultaneously by scanning the wavelength of the laser source. The RF signals from 1.5 to 5 GHz as low as -91 dBm are detected with a gain of about 10 dB, and the frequency is estimated with an error of ±100 MHz. The performance of the OEO system for detecting an RF signal with different modulation rates is also investigated.

10.
Polymers (Basel) ; 10(6)2018 May 31.
Article in English | MEDLINE | ID: mdl-30966637

ABSTRACT

Polymers are promising materials for fabricating photonic integrated waveguide devices. Versatile functional devices can be manufactured using a simple process, with low cost and potential mass-manufacturing. This paper reviews the recent progress of polymer photonic integrated devices fabricated using the UV imprinting technique. The passive polymer waveguide devices for wavelength filtering, power splitting, and light collecting, and the active polymer waveguide devices based on the thermal-optic tuning effect, are introduced. Then, the electro-optic (EO) modulators, by virtue of the high EO coefficient of polymers, are described. Finally, the photonic biosensors, which are based on low-cost and biocompatible polymer platforms, are presented.

11.
Bioconjug Chem ; 27(10): 2266-2270, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27669816

ABSTRACT

A strategy for photoinduced covalent immobilization of proteins on phenol-functionalized surfaces is described. Under visible light irradiation, the reaction can be completed within seconds at ambient temperature, with high yields in aqueous solution of physiological conditions. Protein immobilization is based on a ruthenium-catalyzed radical cross-linking reaction between proteins and phenol-modified surfaces, and the process has proven mild enough for lipase, Staphylococcus aureus protein A, and streptavidin to preserve their bioactivity. This strategy was successfully applied to antibody immobilization on different material platforms, including agarose beads, cellulose membranes, and glass wafers, thus providing a generic procedure for rapid biomodification of surfaces.


Subject(s)
Cross-Linking Reagents/chemistry , Photochemistry/methods , Proteins/chemistry , Antibodies, Immobilized/chemistry , Catalysis , Fluorescein-5-isothiocyanate/chemistry , Immobilized Proteins/chemistry , Lipase/chemistry , Lipase/metabolism , Phenol/chemistry , Ruthenium/chemistry , Sepharose/chemistry , Serum Albumin, Bovine , Spectroscopy, Fourier Transform Infrared , Staphylococcal Protein A/chemistry , Staphylococcal Protein A/metabolism , Streptavidin/chemistry
12.
Opt Express ; 24(13): 14812-27, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410633

ABSTRACT

A microwave photonic link (MPL) with simultaneous suppression of the even-order and third-order distortions using a polarization modulator (PolM), an optical bandpass filter (OBPF), and a balanced photodetector (BPD) is proposed and experimentally demonstrated. The even-order distortions are suppressed by utilizing orthogonal polarization modulation based on the PolM and balanced differential detection based on the BPD. The third-order distortions (IMD3) are suppressed by optimizing the spectral response of the OBPF with an optimal power ratio between the optical carrier and the sidebands of the phase-modulated signals from the PolM. Since the suppression of the IMD3 is achieved when the MPL is optimized for even-order distortion suppression, the proposed MPL can operate with simultaneous suppression of the even-order and third-order distortions. The proposed MPL is analyzed theoretically and is verified by an experiment. For a two-tone RF signal of f1 = 10 GHz and f2 = 19.95 GHz, the spurious-free dynamic range (SFDR2) is enhanced by 23.4 dB for the second harmonic (2f1), and 29.1 and 27.6 dB for the second intermodulation (f2-f1 and f1 + f2), as compared with a conventional MPL. For a two-tone RF signal of f1 = 9.95 GHz and f2 = 10 GHz, the SFDR3 is increased by 13.1 dB as compared with a conventional MPL.

13.
ACS Appl Mater Interfaces ; 5(2): 386-94, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23259485

ABSTRACT

Optical biosensing techniques have become of key importance for label-free monitoring of biomolecular interactions in the current proteomics era. Together with an increasing emphasis on high-throughput applications in functional proteomics and drug discovery, there has been demand for facile and generally applicable methods for the immobilization of a wide range of receptor proteins. Here, we developed a polymer platform for microring resonator biosensors, which allows the immobilization of receptor proteins on the surface of waveguide directly without any additional modification. A sol-gel process based on a mixture of three precursors was employed to prepare a liquid hybrid polysiloxane, which was photopatternable for the photocuring process and UV imprint. Waveguide films were prepared on silicon substrates by spin coating and characterized by atomic force microscopy for roughness, and protein adsorption. The results showed that the surface of the polymer film was smooth (rms = 0.658 nm), and exhibited a moderate hydrophobicity with the water contact angle of 97°. Such a hydrophobic extent could provide a necessary binding strength for stable immobilization of proteins on the material surface in various sensing conditions. Biological activity of the immobilized Staphylococcal protein A and its corresponding biosensing performance were demonstrated by its specific recognition of human Immunoglobulin G. This study showed the potential of preparing dense, homogeneous, specific, and stable biosensing surfaces by immobilizing receptor proteins on polymer-based optical devices through the direct physical adsorption method. We expect that such polymer waveguide could be of special interest in developing low-cost and robust optical biosensing platform for multidimensional arrays.


Subject(s)
Biosensing Techniques/instrumentation , Immobilized Proteins/chemistry , Immunoglobulin G/chemistry , Polymers/chemistry , Silicon/chemistry , Staphylococcal Protein A/chemistry , Adsorption , Humans , Optical Devices , Protein Binding
14.
Appl Opt ; 51(9): 1251-6, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22441469

ABSTRACT

Athermal arrayed waveguide gratings (AWGs) in silicon-on-insulator (SOI) are experimentally demonstrated for the first time to our knowledge. By using narrowed arrayed waveguides, and then overlaying a polymer layer, the wavelength temperature dependence of the AWGs is successfully reduced to -1.5 pm/°C, which is more than 1 order of magnitude less than that of normal SOI AWGs. The athermal behavior of the AWGs is obtained with little degradation of their performance. For the central channel, the cross talk is less than -15 dB and the insertion loss is around 2.6 dB. Good characteristics can be maintained with temperatures up to 75 °C. The total size of the device is 350 µm × 250 µm.

15.
Opt Express ; 17(17): 14627-33, 2009 Aug 17.
Article in English | MEDLINE | ID: mdl-19687941

ABSTRACT

Athermal silicon ring resonators are experimentally demonstrated by overlaying a polymer cladding on narrowed silicon wires. The ideal width to achieve athermal condition for the TE mode of 220 nm-height SOI waveguides is found to be around 350 nm. After overlaying a polymer layer, the wavelength temperature dependence of the silicon ring resonator is reduced to less than 5 pm/degrees C, almost eleven times less than that of normal silicon waveguides. The optical loss of a 350-nm bent waveguide (with a radius of 15 microm) is extracted from the ring transmission spectrum. The scattering loss is reduced to an acceptable level of about 50 dB/cm after overlaying a polymer cladding.


Subject(s)
Optics and Photonics , Polymers/chemistry , Silicon/chemistry , Equipment Design , Fiber Optic Technology , Optical Fibers , Refractometry , Scattering, Radiation , Spectrophotometry/methods , Surface Properties , Temperature , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...