Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Integr Zool ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695096

ABSTRACT

The Tibetan antelope (Pantholops hodgsonii), blue sheep (Pseudois nayaur), and Tibetan sheep (Ovis aries) are the dominant small ruminants in the Three-River-Source National Park (TRSNP). However, knowledge about the association between gut microbiota and host adaptability remains poorly understood. Herein, multi-omics sequencing approaches were employed to investigate the gut microbiota-mediated forage adaption in these ruminants. The results revealed that although wild ruminants (WR) of P. hodgsoni and P. nayaur were faced with severe foraging environments with significantly low vegetation coverage and nutrition, the apparent forage digestibility of dry matter, crude protein, and acid detergent fiber was significantly higher than that of O. aries. The 16s rRNA sequencing showed that the gut microbiota in WR underwent convergent evolution, and alpha diversity in these two groups was significantly higher than that in O. aries. Moreover, indicator species, including Bacteroidetes and Firmicutes, exhibited positive relationships with apparent forage digestibility, and their relative abundances were enriched in the gut of WR. Enterotype analysis further revealed that enterotype 1 belonged to WR, and the abundance of fatty acid synthesis metabolic pathway-related enzyme genes was significantly higher than enterotype 2, represented by O. aries. Besides, the metagenomic analysis identified 14 pathogenic bacterial species, among which 10 potentially pathogenic bacteria were significantly enriched in the gut microbiota of O. aries. Furthermore, the cellulolytic strains and genes encoding cellulase and hemicellulase were significantly enriched in WR. In conclusion, our results provide new evidence of gut microbiota to facilitate wildlife adaption in severe foraging environments of the TRSNP, China.

2.
Front Pediatr ; 12: 1330737, 2024.
Article in English | MEDLINE | ID: mdl-38468874

ABSTRACT

Objective: To investigate the time course of action of different doses of mivacurium and determine the appropriate dose for laryngeal mask airway (LMA) insertion for day-case urologic surgery in children. Methods: A total of 105 patients who enrolled in this study between March 2021 and December 2021 were randomised into 3 groups: Group A (mivacurium 0.15 mg/kg, n = 35), Group B (mivacurium 0.20 mg/kg, n = 35) and Group C (mivacurium 0.25 mg/kg, n = 35). The different doses of mivacurium were injected before LMA insertion. The primary outcomes included the grading of conditions for the LMA insertion-18 score, onset time, recovery index and the duration that mivacurium was effective. Secondary outcomes included pulse oxygen saturation, mean blood pressure, heart rate and the incidence of adverse events. Results: The score of the conditions for LMA insertion in Group A was significantly lower than in Groups C and B (p < 0.005). There was a significant difference in the onset time between Groups B and A (p < 0.005). There was no significant difference in the overall incidence of adverse reactions between these groups (p > 0.05). Conclusion: Anaesthesia with 0.2 mg/kg of mivacurium can effectively shorten the onset time and facilitate insertion of the LMA in children undergoing day-case urologic surgery.

3.
Cancer Res ; 84(4): 560-576, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38117512

ABSTRACT

Phospholipase C epsilon 1 (PLCE1) is a well-established susceptibility gene for esophageal squamous cell carcinoma (ESCC). Identification of the underlying mechanism(s) regulated by PLCE1 could lead to a better understanding of ESCC tumorigenesis. In this study, we found that PLCE1 enhances tumor progression by regulating the replicative helicase MCM7 via two pathways. PLCE1 activated PKCα-mediated phosphorylation of E2F1, which led to the transcriptional activation of MCM7 and miR-106b-5p. The increased expression of miR-106b-5p, located in intron 13 of MCM7, suppressed autophagy and apoptosis by targeting Beclin-1 and RBL2, respectively. Moreover, MCM7 cooperated with the miR-106b-25 cluster to promote PLCE1-dependent cell-cycle progression both in vivo and in vitro. In addition, PLCE1 potentiated the phosphorylation of MCM7 at six threonine residues by the atypical kinase RIOK2, which promoted MCM complex assembly, chromatin loading, and cell-cycle progression. Inhibition of PLCE1 or RIOK2 hampered MCM7-mediated DNA replication, resulting in G1-S arrest. Furthermore, MCM7 overexpression in ESCC correlated with poor patient survival. Overall, these findings provide insights into the role of PLCE1 as an oncogenic regulator, a promising prognostic biomarker, and a potential therapeutic target in ESCC. SIGNIFICANCE: PLCE1 promotes tumor progression in ESCC by activating PKCα-mediated phosphorylation of E2F1 to upregulate MCM7 and miR-106b-5p expression and by potentiating MCM7 phosphorylation by RIOK2.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Phosphorylation , Protein Kinase C-alpha/metabolism , Cell Line, Tumor , Phosphoinositide Phospholipase C/genetics , Phosphoinositide Phospholipase C/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic , Cell Proliferation , Minichromosome Maintenance Complex Component 7/genetics , Minichromosome Maintenance Complex Component 7/metabolism
4.
Plants (Basel) ; 12(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37765473

ABSTRACT

The experiment was conducted at the Taidong Base of Shandong Institute of Pomology, Tai'an City, Shandong Province, China, from May to October 2022. Using Fuji Apple Tianhong.2/SH/Malus robusta (M. robusta) as experimental materials, the differences and mechanisms of the effects of non-bagging and bagging cultivation on the growth and changes in some substance content of Fuji apple fruits were studied. The results showed that compared with bagging, non-bagging cultivation increased single fruit weight and decreased fruit shape index, increased fruit sugar content, reduced acid content, and increased taste. It increased the content of vitamin C (VC) and protein in the fruit, increased the types and content of aromatic components in the fruit, significantly increased the activity of sugar- and acid-related enzymes, and improved the antioxidant capacity of the fruit. Compared to bagging cultivation, non-bagging cultivation improved the weight, taste (sugar acid ratio), and aroma of Fuji fruit, which is related to increasing the content of auxin (IAA), cytokinin (ZR), and salicylic acid (SA) and reducing the content of abscisic acid (ABA) in the fruit, as well as increasing the content of medium and trace elements calcium (Ca), iron (Fe), manganese (Mg), and boron (B). One of the mechanisms involved is the significant increase in gene expression related to phenylpropanoid biosynthesis, pentose and glucuronate interconversion, starch and sucrose metabolism, zeatin biosynthesis, microtubules, motor proteins microtubule movement, xyloglucan metabolic process, cell division, and peroxidase activity. In short, non-bagging cultivation is more conducive to improving the intrinsic quality and flavor development of Fuji apples, and one of the mechanisms is that non-bagging cultivation is beneficial for increasing the expression of related genes.

5.
Front Plant Sci ; 14: 1187551, 2023.
Article in English | MEDLINE | ID: mdl-37389287

ABSTRACT

Introduction: Apricot fruits are edible and serve as a source of medicinal compounds. Flavonols are important plant secondary metabolites that have antioxidant and antitumor effects and may promote cardiovascular health. Methods: The flavonoid content in three stages of the 'Kuijin' and the 'Katy' was observed, followed by the combination of metabolome and transcriptome analysis to explore the metabolic basis of flavonol synthesis. Results: The differences in the metabolite contents between stages (of the same cultivar) and between cultivars (at the same stage) revealed decreases in the flavonoid content as fruits developed (i.e., from 0.28 mg/g to 0.12 mg/g in 'Kuijin' and from 0.23 mg/g to 0.05 mg/g in 'Katy'). To decipher the regulation of flavonol synthesis in apricot (Prunus armeniaca L.), the metabolomes and transcriptomes of fruit pulp at three developmental stages of 'Kuijin' and the 'Katy' were analyzed. A total of 572 metabolites were detected in 'Kuijin' and the 'Katy' pulp, including 111 flavonoids. The higher flavonol content young 'Kuijin' fruits at 42 days after full bloom is mainly due to 10 types of flavonols. Three pairs of significant differences in flavonol content were identified. From these three comparison groups, three structural genes were strongly correlated with the levels of 10 types of flavonols (Pearson correlation coefficients > 0.8, p value < 0.05), including PARG09190, PARG15135, and PARG17939. The weighted gene co-expression network analysis showed that the turquoise module genes were highly correlated with flavonol contents (P < 0.01). There were 4897 genes in this module. Out of 4897 genes, 28 transcription factors are associated with 3 structural genes based on weight value. Two of the transcription factors are not only associated with PARG09190 but also with PARG15135, indicating their critical importance in the flavonols biosynthesis. The two TFs are PARG27864 and PARG10875. Discussion: These findings provide new insights into the biosynthesis of flavonols and may explain the significant differences in flavonoid content between the 'Kuijin' and the 'Katy' cultivars. Moreover, it will aid in genetic improvement to enhance the nutritional and health value of apricots.

6.
Vet Med Sci ; 9(2): 934-944, 2023 03.
Article in English | MEDLINE | ID: mdl-36610031

ABSTRACT

BACKGROUNDS: Transforming growth factor-ß (TGF-ß) type I receptor (TGFßRI) and type II receptor (TGFßRII) are the members of the TGFß superfamily, which are potent regulators of cell proliferation and differentiation in many organ systems, and they play key roles in multiple aspects of follicle development. OBJECTIVES: We aimed to explore the characterization, expression analysis of TGFßRI and TGFßRII genes, and the association with litter size in Tibetan sheep. METHODS: In this study, we cloned the complete coding sequences of TGFßRI and TGFßRII genes in Tibetan sheep and analyzed their genomic structures. RESULTS: The results showed that percentages of sequences homology of the two proteins in Tibetan sheep were the most similar to Ovis aries (100%), followed by Bos mutus (99%). The RT-qPCR showed that two genes were expressed widely in the different tissues of Tibetan sheep. The TGFßRI expression was the highest in the lung (p < 0.05), followed by the spleen and ovary (p < 0.05). The TGFßRII expression was significantly higher in uterus than that in lung and ovary (p < 0.05). In addition, the χ2 test indicated that all ewes in the population were in Hardy-Weinberg equilibrium, and the population was in medium or low polymorphic information content status. We also found four Single Nucleotide Polymorphism (SNPs), g.9414A > G, g.28881A > G, g.28809T > C, g.10429G > A in sheep TGFßRI gene and g.63940C > T, g.63976C > T, g.64538C > T, g.64504T > A in TGFßRII gene. Three genotypes, except for g.64504T > A, and three haplotypes were identified in each gene. linkage disequilibrium analysis indicated that there was strong linkage disequilibrium in each gene. The association analysis showed that the four SNPs of TGFßRI were associated with litter size (p < 0.05), and g.63940C > T of TGFßRII was confirmed to be associated with litter size (p < 0.05). CONCLUSIONS: Based on these preliminary results, we can assume that TGFß receptors (TGFßRI and TGFßRII) may play an important role in sheep reproduction.


Subject(s)
Gene Expression Profiling , Litter Size , Receptor, Transforming Growth Factor-beta Type II , Receptor, Transforming Growth Factor-beta Type I , Sheep , Litter Size/genetics , Tibet , Sheep/genetics , Sheep/physiology , Cloning, Molecular , Receptor, Transforming Growth Factor-beta Type I/chemistry , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type II/chemistry , Receptor, Transforming Growth Factor-beta Type II/genetics , Sequence Alignment , Protein Conformation , Models, Molecular , Amino Acid Sequence , Evolution, Molecular , Genetics, Population , Polymorphism, Single Nucleotide , Haplotypes , Female , Animals , Humans
7.
Front Genet ; 13: 971464, 2022.
Article in English | MEDLINE | ID: mdl-36160022

ABSTRACT

Copy number variation (CNV), an important source of genomic structural variation, can disturb genetic structure, dosage, regulation and expression, and is associated with phenotypic diversity and adaptation to local environments in mammals. In the present study, 24 resequencing datasets were used to characterize CNVs in three ecotypic populations of Tibetan sheep and assess CNVs related to domestication and adaptation in Qinghai-Tibetan Plateau. A total of 87,832 CNV events accounting for 0.3% of the sheep genome were detected. After merging the overlapping CNVs, 2777 CNV regions (CNVRs) were obtained, among which 1098 CNVRs were shared by the three populations. The average length of these CNVRs was more than 3 kb, and duplication events were more frequent than deletions. Functional analysis showed that the shared CNVRs were significantly enriched in 56 GO terms and 18 KEGG pathways that were mainly concerned with ABC transporters, olfactory transduction and oxygen transport. Moreover, 188 CNVRs overlapped with 97 quantitative trait loci (QTLs), such as growth and carcass QTLs, immunoglobulin QTLs, milk yield QTLs and fecal egg counts QTLs. PCDH15, APP and GRID2 overlapped with body weight QTLs. Furthermore, Vst analysis showed that RUNX1, LOC101104348, LOC105604082 and PAG11 were highly divergent between Highland-type Tibetan Sheep (HTS) and Valley-type Tibetan sheep (VTS), and RUNX1 and LOC101111988 were significantly differentiated between VTS and Oura-type Tibetan sheep (OTS). The duplication of RUNX1 may facilitate the hypoxia adaptation of OTS and HTS in Qinghai-Tibetan Plateau, which deserves further research in detail. In conclusion, for the first time, we represented the genome-wide distribution characteristics of CNVs in Tibetan sheep by resequencing, and provided a valuable genetic variation resource, which will facilitate the elucidation of the genetic basis underlying the distinct phenotypic traits and local adaptation of Tibetan sheep.

8.
Front Plant Sci ; 13: 946115, 2022.
Article in English | MEDLINE | ID: mdl-35968118

ABSTRACT

Many studies have demonstrated that anthocyanin synthesis in apple peel is induced by light, but the color of bagged apple peel continues to change under dark conditions after light induction has not been characterized. Here, transcriptional and metabolic changes associated with changes in apple peel coloration in the dark after different light induction treatments were studied. Apple pericarp can achieve a normal color under complete darkness followed by light induction. Metabolomics analysis indicated that the expression levels of cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were high, which might be associated with the red color development of apple peel. Transcriptome analysis revealed high expression levels of MdUFGTs, MdMYBs, and MdNACs, which might play a key role in light-induced anthocyanin accumulation under dark conditions. 13 key genes related to dark coloring after light induction was screened. The results of this study provide new insights into the mechanism of anthocyanin synthesis under dark conditions.

9.
Front Microbiol ; 13: 949002, 2022.
Article in English | MEDLINE | ID: mdl-35923394

ABSTRACT

It was acknowledged long ago that microorganisms have played critical roles in animal evolution. Tibetan wild asses (TWA, Equus kiang) are the only wild perissodactyls on the Qinghai-Tibet Plateau (QTP) and the first national protected animals; however, knowledge about the relationships between their gut microbiota and the host's adaptability remains poorly understood. Herein, 16S rRNA and meta-genomic sequencing approaches were employed to investigate the gut microbiota-host associations in TWA and were compared against those of the co-resident livestock of yak (Bos grunnies) and Tibetan sheep (Ovis aries). Results revealed that the gut microbiota of yak and Tibetan sheep underwent convergent evolution. By contrast, the intestinal microflora of TWA diverged in a direction enabling the host to subsist on sparse and low-quality forage. Meanwhile, high microbial diversity (Shannon and Chao1 indices), cellulolytic activity, and abundant indicator species such as Spirochaetes, Bacteroidetes, Prevotella_1, and Treponema_2 supported forage digestion and short-chain fatty acid production in the gut of TWA. Meanwhile, the enterotype identification analysis showed that TWA shifted their enterotype in response to low-quality forage for a better utilization of forage nitrogen and short-chain fatty acid production. Metagenomic analysis revealed that plant biomass degrading microbial consortia, genes, and enzymes like the cellulolytic strains (Prevotella ruminicola, Ruminococcus flavefaciens, Ruminococcus albus, Butyrivibrio fibrisolvens, and Ruminobacter amylophilus), as well as carbohydrate metabolism genes (GH43, GH3, GH31, GH5, and GH10) and enzymes (ß-glucosidase, xylanase, and ß-xylosidase, etc.) had a significantly higher enrichment in TWA. Our results indicate that gut microbiota can improve the adaptability of TWA through plant biomass degradation and energy maintenance by the functions of gut microbiota in the face of nutritional deficiencies and also provide a strong rationale for understanding the roles of gut microbiota in the adaptation of QTP wildlife when facing harsh feeding environments.

10.
Front Oncol ; 12: 893319, 2022.
Article in English | MEDLINE | ID: mdl-35756676

ABSTRACT

The co-occurrence of multiple primary cancers with hematological malignancies is uncommon, and acute promyelocytic leukemia (APL) with MPC is even rarer, with only a few cases reported in the literature. Herein, we introduce the diagnosis and treatment of 2 cases of MPC complicated with APL in our hospital and review the relevant literature. Both patients were primary solid tumor patients and were treated with surgery and chemotherapy, and had stable disease (SD). However, more than 1 year after the primary tumor was diagnosed, clinical symptoms were found and APL was diagnosed. Both patients received standard remission-induction therapy, but unfortunately died in the short term due to hemorrhagic complications. In conclusion, treatment of hematological neoplasms, especially acute leukemia combined with multiple primary cancers, is challenging. The prognostic factors and survival analysis of MPC patients with combined APL still need further clinical research and analysis.

11.
J Plant Physiol ; 271: 153666, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35303514

ABSTRACT

There is an increasing awareness of the adverse environmental effects of the intensive practices used in modern crop farming, such as those that cause greenhouse gas emissions and nutrient leaching. Harnessing beneficial microbes by changing planting practices presents a promising strategy for optimizing plant growth and agricultural sustainability. However, the characteristics of soil microorganisms under different planting patterns remain uncertain. We conducted a study of soil bacterial structure and function under monoculture vs. polyculture planting regimes using 16S rRNA gene sequencing on the Qinghai-Tibet Plateau. We observed substantial variations in bacterial richness, diversity, and relative abundances of taxa between gramineous and leguminous monocultures, as well as between gramineae-legume polycultures. The number of operational taxonomic units and alpha and beta diversity were markedly higher in the leguminous monocultures than in the gramineous monocultures; conversely, network analysis revealed that the interactions among the bacterial genera in the gramineous monocultures were more complex than those in the other two planting regimes. Moreover, nitrogen fixation, soil detoxification, and productivity were increased under the gramineous monocultures; more importantly, low soil-borne diseases (e.g., animals parasitic or symbiont) also facilitated strongly suppressive effects toward soil-borne pathogens. Nevertheless, the gramineae-legume polycultures were prone to nitrate seepage contamination, and leguminous monocultures exhibited strong denitrification effects. These results revealed that the gramineous monoculture is a more promising cropping pattern on the Qinghai-Tibetan Plateau. Understanding the bacterial distribution patterns and interactions of crop-sensitive microbes presents a basis for developing microbial management strategies for smart farming.


Subject(s)
Soil Microbiology , Soil , Bacterial Structures , RNA, Ribosomal, 16S/genetics , Soil/chemistry , Tibet
12.
Animals (Basel) ; 11(8)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34438701

ABSTRACT

In the current research, samples of yak gastrointestinal tracts (GITs) were used to profile the bacterial compositional characteristics using high through-put sequencing technology of 16S RNA amplicon. A total of 6959 OTUs was obtained from 20,799,614 effective tags, among which 751 OTUs were shared by ten sections. A total of 16 known phyla were obtained in all samples-the most abundant phyla were Firmicutes (34.58%), Bacteroidetes (33.96%) and Verrucomicrobia (11.70%). At the genus level, a total of 66 genera were obtained-Rikenellaceae_RC9_gut_group (7.24%), Akkermansia (6.32%) and Ruminococcaceae_UCG-005 (6.14%) were the most abundant. Species of Observed (Sob), Shannon and Chao values of the Stomach were the greatest, followed by the large intestine, while small intestine had the lowest diversity (p < 0.05). Bacteroidete were more abundant in sections from rumen to duodenum; while Firmicutes were the most abundant in sections from jejunum. ABC transporters (7.82%), Aminoacyl-tRNA biosynthesis (4.85%) and Purine metabolism (3.77%) were the most abundant level-3 pathways in all samples. The results of associated correlation analysis indicated that rectum samples might be used as an estimator of rumen bacterial communities and fermentation. The results of this research enrich the current knowledge about the unique animals of the QTP and extend our insight into GITs microecology of various animals.

13.
Plant Cell Physiol ; 62(9): 1387-1395, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34086948

ABSTRACT

Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.


Subject(s)
Actin Cytoskeleton/metabolism , Actin Depolymerizing Factors/genetics , Arabidopsis Proteins/genetics , Arabidopsis/physiology , Salt Stress/genetics , Transcription Factors/genetics , Actin Depolymerizing Factors/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant/physiology , Plants, Genetically Modified/metabolism , Transcription Factors/metabolism
14.
Ying Yong Sheng Tai Xue Bao ; 32(2): 557-563, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33650365

ABSTRACT

With dwarfing interstock Fuji apples as the test materials and water treatment as the control (CK), we examined the fruit thinning effect and its influences on leaves' photosynthesis by spraying 200, 300, and 400 mg·L-1 metamitron during the young fruit period to solve artificial fruit thinning problems (time-consuming, much labor, and low efficiency). The results showed that metamitron application could significantly reduce the inflorescence and flowers' fruit-setting rate by 16.5%-22.8% and 50.9%-53.9%, respectively. The treatment of 300 mg·L-1 metamitron had the strongest fruit thinning effect, with a single fruit rate of 46.6% and a double fruit rate of 18.3%. As a photosynthesis inhibitor, metamitron application reduced the chlorophyll content of leaves and strongly affected photosynthesis. The inhibitory effect on chlorophyll content disappeared after 15 days of the treatment, while that on the net photosynthetic rate disappeared gradually after 11 days of the treatment. The application of metamitron significantly reduced the maximum quantum yield of PSⅡ reaction center (Fv/Fm), actual photochemical efficiency (ΦPSⅡ), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (NPQ), with such inhibitory effect having been lasted for 15 days. OJIP analysis showed that metamitron caused damage to the apple leaves' oxygen-evolving complex, especially limiting the transfer of electrons in the PSⅡ reaction center from QA to QB. Metamitron treatment increased Wk, and significantly decreased ψo, RC/CSm, and PIabs. Besides, 300 mg·L-1 metamitron had the most significant effect. Our results showed that metamitron destroyed the structure of the PSⅡ reaction center of apple leaves and hindered the transfer of electrons from the donor to the receptor of PSⅡ. Consequently, the photosynthetic rate was affected, and the young fruits fell off due to the lack of accumulation of photosynthetic products.


Subject(s)
Malus , Chlorophyll , Fluorescence , Fruit , Photosynthesis , Plant Leaves , Triazines
15.
Front Microbiol ; 11: 587558, 2020.
Article in English | MEDLINE | ID: mdl-33193243

ABSTRACT

The rumen microbiota is strongly associated with host health, nutrient absorption, and adaptability. However, the composition, functioning and adaptability of rumen microbiota in Tibetan sheep (TS) across different phenological periods are unclear. In this study we used sequencing of the V4-V5 region of 16S rRNA, qPCR technology and metagenomics to investigate the adaption of rumen microbiota to forage in different stages of phenology. In a grassy period, due to the high nutritional quality of the forage, TS can produce high concentrations of NH3-N and short fatty acids by increasing the content of key bacteria in the rumen, such as Bacteroidetes, Prevotella, Succiniclasticum, Treponema, Butyrivibrio fibrisolvens, Fibrobacter succinogenes, Prevotella ruminicola, Ruminococcus albus, and Ruminococcus flavefaciens to aid in growth. In the withering period, there was a positive correlation between microorganisms which indicated the closely cooperation between microorganisms, and metagenomic analysis showed that the high genes (GHs and CBMs) and subtribe (GH8, GH12, GH45, GH6, GH9, GH5, GH10, GH3, GH52, GH11, GH57, CBM1, CBM4, CBM6, CBM16, CBM37, CBM13, CBM35, CBM42, CBM32, and CBM62) that encode cellulolytic enzymes were significantly increased when the host faced low quantity and quality of forage. Genes involved in metabolic pathways, fatty acid biosynthesis and biosynthesis of antibiotics were significantly enriched, which indicated that rumen microbiota could improve plant biomass deconstruction and energy maintenance in the face of nutritional deficiencies. In the regreen period, both the composition and function of rumen microbiota had obvious disadvantages, therefore, to improve the competitiveness of microorganisms, we suggest TS should be supplemented with high-protein feed. This study is of great significance for exploring the high altitude adaptability of TS.

16.
PeerJ ; 8: e9032, 2020.
Article in English | MEDLINE | ID: mdl-32547852

ABSTRACT

Tibetan wild asses (Equus Kiang) are the only wild species of perissodactyls on the Qinghai-Tibet Plateau and appears on the International Union for Conversation of Nature (IUCN) 2012 Red List of threatened species. Therefore, understanding the gut microbiota composition and function of wild asses can provide a theoretical for the situ conservation of wild animals in the future.In this study, we measured the dry matter digestion by the 4 molar hydrochloric acid (4N HCL) acid-insoluble ash method and analyzed the intestinal microbiota of wild asses and domestic donkeys by high-throughput sequencing of the 16s rDNA genes in V3-V4 regions. The results showed that the dry matter digestion in wild asses was significantly higher than in domestic donkeys (P < 0.05). No significant difference in alpha diversity was detected between these two groups. Beta diversity showed that the bacterial community structure of wild asses was acutely different from domestic donkeys. At the phylum level, the two dominant phyla Bacteroidetes and Firmicutes in wild asses were significantly higher than that in domestic donkeys. At the genus level, Ruminococcaceae_NK4A214, Phascolarctobacterium, Coprostanoligenes_group, Lachnospiraceae_XPB1014_group and Akkermansia in wild asses were significantly higher than in domestic donkeys. Moreover, statistical comparisons showed that 40 different metabolic pathways exhibited significant differences. Among them, 29 pathways had richer concentrations in wild asses than domestic donkeys, mainly included amino acid metabolism, carbohydrate metabolism, and energy metabolism. Of note, network analysis showed that wild asses harbored a relatively more complex bacterial network than domestic donkeys, possibly reflecting the specific niche adaption of gut bacterial communities through species interactions. The overall results indicated that wild asses have advantages over domestic donkeys in dry matter digestion, gut microbial community composition and function, and wild asses have their unique intestinal flora to adapt high altitudes on the Qinghai-Tibet plateau.

17.
Int J Clin Exp Pathol ; 13(4): 746-755, 2020.
Article in English | MEDLINE | ID: mdl-32355523

ABSTRACT

This study aimed to investigate vitamin D receptor (VDR) expression levels and evaluate their clinical significance in patients with colorectal cancer (CRC). VDR protein expression was validated by immunohistochemistry in 188 CRC tissues and 134 normal colorectal tissues. The associations between VDR expression and clinicopathologic characteristics, including prognostic outcomes, were analyzed. VDR expression in normal colorectal tissue was higher than that in CRC (83.6% versus 34.6%, P = 4.489 × 10-20) and generated moderate diagnostic performance for CRC detection (AUC = 0.88, sensitivity = 0.87, specificity = 0.84). Low VDR expression was associated with invasion depth (P = 0.001) and poor survival in CRC (P = 0.031). Univariate Cox analysis demonstrated VDR expression (P = 0.036) was a significant prognostic predictor for survival in patients with CRC. Low VDR expression could be a valuable diagnostic and prognostic biomarker for CRC patients. Targeting VDR may offer a potential therapeutic strategy for blocking CRC.

18.
Cancer Res ; 80(11): 2175-2189, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32066565

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is one of the deadliest malignant diseases. Multiple studies with large clinic-based cohorts have revealed that variations of phospholipase C epsilon 1 (PLCE1) correlate with esophageal cancer susceptibility. However, the causative role of PLCE1 in ESCC has remained elusive. Here, we observed that hypomethylation-mediated upregulation of PLCE1 expression was implicated in esophageal carcinogenesis and poor prognosis in ESCC cohorts. PLCE1 inhibited cell autophagy and suppressed the protein expression of p53 and various p53-targeted genes in ESCC. Moreover, PLCE1 decreased the half-life of p53 and promoted p53 ubiquitination, whereas it increased the half-life of mouse double minute 2 homolog (MDM2) and inhibited its ubiquitination, leading to MDM2 stabilization. Mechanistically, the function of PLCE1 correlated with its direct binding to both p53 and MDM2, which promoted MDM2-dependent ubiquitination of p53 and subsequent degradation in vitro. Consequently, knockdown of PLCE1 combined with transfection of a recombinant adenoviral vector encoding wild-type p53 resulted in significantly increased levels of autophagy and apoptosis of esophageal cancer in vivo. Clinically, the upregulation of PLCE1 and mutant p53 protein predicted poor overall survival of patients with ESCC, and PLCE1 was positively correlated with p53 in ESCC cohorts. Collectively, this work identified an essential role for PLCE1- and MDM2-mediated ubiquitination and degradation of p53 in inhibiting ESCC autophagy and indicates that targeting the PLCE1-MDM2-p53 axis may provide a novel therapeutic approach for ESCC. SIGNIFICANCE: These findings identify hypomethylation-mediated activation of PLCE1 as a potential oncogene that blocks cellular autophagy of esophageal carcinoma by facilitating the MDM2-dependent ubiquitination of p53 and subsequent degradation. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/11/2175/F1.large.jpg.


Subject(s)
Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Phosphoinositide Phospholipase C/metabolism , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Autophagy/physiology , Carcinogenesis , Cell Line, Tumor , DNA Methylation , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Knockdown Techniques , Heterografts , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Phosphoinositide Phospholipase C/genetics , Promoter Regions, Genetic , Protein Stability , Ubiquitination , Up-Regulation
19.
Cancer Lett ; 468: 14-26, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31600529

ABSTRACT

Deregulation of SOX9 in esophageal cancer has been reported. However, the regulatory mechanisms underlying SOX9 during esophageal squamous cell carcinoma (ESCC) progression remain poorly understood. Here, we independently confirmed the increased SOX9 expression in two ESCC cohorts and its correlation with poor prognosis. We demonstrated that SOX9 was required for maintaining self-renewal, motility, and chemoresistance in vitro and that ectopic expression of SOX9 promoted tumorigenicity in vivo. Screening for potential SOX9-regulated miRNAs revealed that target genes of differentially expressed miRNAs were enriched in the PI3K/AKT signaling pathway and identified the downregulated miR-203a as a candidate. Mechanistically, SOX9 activation caused repression of miR-203a transcription by binding to miR-203a promoter, thus preventing the miR-203a-mediated inhibition of multiple PI3K/AKT/mTOR components, including PIK3CA, AKT2, and RPS6KB1. The association between SOX9 expression and PI3K/AKT/mTOR signaling was further validated in clinical samples. Moreover, rapamycin treatment attenuated the SOX9-mediated malignant phenotypes and potentiated cisplatin-mediated inhibition of tumor growth. Together, these findings uncover a novel activation of the PI3K/AKT pathway by the SOX9/miR-203a axis and define a subgroup of patients who may benefit from targeted therapy.


Subject(s)
Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , SOX9 Transcription Factor/metabolism , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Cohort Studies , Disease Progression , Drug Synergism , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Esophageal Neoplasms/therapy , Esophageal Squamous Cell Carcinoma/mortality , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/therapy , Esophagectomy , Esophagus/pathology , Esophagus/surgery , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Male , MicroRNAs/metabolism , Middle Aged , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Sirolimus/pharmacology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic , Xenograft Model Antitumor Assays
20.
PeerJ ; 7: e7645, 2019.
Article in English | MEDLINE | ID: mdl-31579584

ABSTRACT

The rumen microbiota of ruminants plays a vital role in fiber digestion, and environmental factors affect its community structure. The yak (Bos grunniens) is the main livestock species that inhabits the Qinghai-Tibet Plateau (QTP) at regions located at high-altitude of 3,000-5,000 m. This work investigated the rumen bacterial community of yak that grazed on the QTP during the whole year to evaluate the relationship between the rumen bacterial community and the nutrient composition of forage plant at three stages. In this study, the diversity of the rumen prokaryotic community composition was monitored in 10 full-grazing yak in an alpine meadow of the QTP. The nutrient composition of three forage growth stages was determined: re-green stage (REGY), grassy stage (GY), and withered stage (WGY). High-throughput sequencing of bacterial 16S rRNA gene was used. The results showed that the nutritive composition of the alpine meadow changed with the seasons: crude protein (CP) (13.22%) was high in forage during REGY (spring), while neutral detergent fiber (NDF) (59.00%) was high during WGY (winter). Microbial diversity and richness were highest during REGY and the average number of operational taxonomic units from 30 samples was 4,470. The microbial composition was dominated by members of Bacteroidetes (51.82%), followed by Firmicutes (34.08%), and the relative microbial abundance changed in the three forage growth stages. Unweighted UniFrac distance PcoA showed that the bacterial community structure differed between REGY, GY, and WGY. Furthermore, taxonomic groups did not present differences regarding gender in these three stages. The rumen microbiota was enriched with functional potentials that were related to ABC transporters, the two-component system, Aminoacyl-tRNA biosynthesis, and metabolism of Purine, Pyrimidine, Starch and sucrose metabolism. Significant differences were found in the composition, diversity, and function of yak ruminal microorganisms during different forage growth stages. This indicates that microbial changes in the rumen depend on changes in the forage nutritional composition. These findings provide evidence on the rumen microbial diversity of yaks in the QTP.

SELECTION OF CITATIONS
SEARCH DETAIL
...