Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem ; 349: 129004, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33556724

ABSTRACT

The purpose of this study was to explore the effects of 1-MCP on the sprouting and preservation of ginger rhizomes during storage at room temperature. Ginger rhizomes were treated with 1 µL L-1 1-methylcyclopropene (1-MCP) and stored at 23 ± 0.2 °C. Our data showed that application of 1-MCP reduced the rate of sprouting during storage compared with the control rhizome. Respiration rate and the reducing sugar content were also reduced following 1-MCP treatment, while the starch content increased. 1-MCP treatment increased the total phenol content and inhibited polyphenol oxidase (PPO) activity. 1-MCP treatment was also associated with a higher ascorbic acid content but a reduced crude fiber content. The generation of superoxide anion free radicals (O2-), hydrogen peroxide (H2O2) and malondialdehyde (MDA) was lower following 1-MCP treatment, while the activities of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were higher compared with the controls. These results suggested that application of 1-MCP could reduce sprouting rates, decrease the accumulation of ROS, and maintain the quality of ginger rhizomes during storage at room temperature. It would be useful to further explore the role and mechanisms of action of ethylene in regulating the sprouting of ginger rhizomes.


Subject(s)
Cyclopropanes/pharmacology , Food Preservation/methods , Rhizome/drug effects , Rhizome/growth & development , Temperature , Zingiber officinale/drug effects , Zingiber officinale/growth & development , Ethylenes/analysis , Zingiber officinale/chemistry , Hydrogen Peroxide/analysis , Malondialdehyde/analysis , Phenols/analysis
2.
J Food Biochem ; : e13419, 2020 Aug 09.
Article in English | MEDLINE | ID: mdl-32776337

ABSTRACT

Fruit softening is an inevitable event during ripening of red raspberry fruit even when stored at low temperature. In this research, the effects of CaCl2 treatment on softening of red raspberry during storage at 4°C were studied. The results indicated that CaCl2 treatment effectively delayed the decrease of firmness and reduced the respiration rate of red raspberry fruit during storage. The CaCl2 -treated fruit maintained higher protopectin content and lower soluble pectin content compared with controls. The cellulose and starch contents in the fruit treated with CaCl2 kept higher than in the control during storage. Moreover, CaCl2 treatment decreased activities of polygalacturonase (PG), pectin methylesterase (PME), and cellulase (Cx) mainly at the early stage of softening. Application of CaCl2 lead to the decreased activities of amylase (AM) and ß-galactosidase (ß-gal) compared with controls during the entire storage periods. These results indicated that CaCl2 treatment might delay postharvest softening of red raspberry fruit stored at low-temperature by retarding cell wall degradation and starch hydrolysis. PRACTICAL APPLICATIONS: Red raspberry fruit is very popular with consumers because of its high-nutritional value and anticancer effects. However, it has a very short postharvest life and softens easily even when stored at low temperature, which limits its distribution to distant market. Our data indicated that CaCl2 treatment delayed postharvest softening of red raspberry fruit stored at low temperature. The results could provide preliminary yet essential information to research community to further study the molecular mechanisms of softening in red raspberry fruit, and also provide reference data for maintaining quality of postharvest red raspberry fruit.

3.
Food Chem ; 308: 125707, 2020 Mar 05.
Article in English | MEDLINE | ID: mdl-31669943

ABSTRACT

The ripening of the apple (Malus × domestica Borkh.) fruit is regulated by the phytohormone ethylene, where degreening is an important physiological metabolism caused by chlorophyll (Chl) degradation. However, to date, research on how ethylene affects the Chl degradation pathway of apple peel during ripening remains scarce. In this study, the effects of ethylene on the expression of Chl catabolic genes (CCGs) of apple peel during ripening were studied by treating harvested commercial mature apples with 0.5 µL L-1 1-methylcyclopropene (1-MCP). The results showed that 1-MCP treatment led to a delayed climacteric peak of respiration and ethylene production, exhibiting higher Chl content and hue angle (H˚) compared to untreated fruit during ripening. Lower quantities of pheophorbide a oxygenase (PAO), pheophytinase (PPH) and red Chl catabolite reductase (RCCR) were also observed in peel tissues under 1-MCP treatment during ripening. Further study with quantitative real-time polymerase chain reaction (qPCR) revealed that the expression of CCGs, except for MdNYE1a, increased atdifferentdegrees upon ripening. Meanwhile, the apples treated with 1-MCP presented a downregulated expression of MdRCCR2, MdNYC1, MdNYC3 and MdNOL2 and a fluctuating expression of MdNYE1a, MdPPH1, MdPAO6, MdPAO8 and MdHCAR compared with the controls during ripening. Our results indicated the regulatory role of ethylene in the Chl degradation pathway of apple peel during ripening.


Subject(s)
Chlorophyll/metabolism , Cyclopropanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Malus/metabolism , Plant Growth Regulators/pharmacology , Ethylenes/metabolism , Food Storage , Fruit/drug effects , Fruit/metabolism , Malus/drug effects , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...