Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38543464

ABSTRACT

In this study, the graded hierarchical hexagonal honeycomb (GHHH) integrating gradient design and hierarchical design was fabricated using the 3D-printing technique, and its in-plane elastic properties were investigated theoretically, experimentally, and numerically. Theoretical solutions were developed based on the Euler beam theory to predict the effective elastic modulus and Poisson's ratio of GHHH, and theoretical values were in good agreement with the experimental and numerical results. The effect of gradient design and hierarchical design on the in-plane elastic properties of GHHH was also analyzed and compared. Results showed that the hierarchical design has a more significant effect on Poisson's ratio and adjusting the internal forces of GHHH compared with the gradient design. In addition, it was found that GHHH exhibited higher stiffness compared with regular hexagonal honeycomb (RHH), graded hexagonal honeycomb (GHH), and vertex-based hierarchical hexagonal honeycomb (VHHH) under the constraint of the same relative density, respectively. Specifically, the effective elastic modulus of GHHH can be enhanced by 119.82% compared to that of RHH. This research will help to reveal the effect of integrating hierarchical design and gradient design on the in-plane elastic properties of honeycombs.

2.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048950

ABSTRACT

Modified polyurethane concrete (MPUC) is a new material for steel deck pavements. In service, the pavement is often cracked due to excessive tensile stress caused by temperature changes. In order to study the tensile properties of MPUC in the diurnal temperature range of steel decks, uniaxial tensile tests of MPUC were carried out at five temperatures. Three kinds of specimens and a novel fixture were designed and fabricated to compare the results of four different tensile test methods. The deformation of the specimen was collected synchronously by two methods: pasting strain gauge and digital image correlation (DIC) technique. Based on the experiment, the tensile mechanical properties, failure modes, and constitutive relations of MPUC were studied under the effect of temperature. The research results show that the novel fixture can avoid stress concentration. By observing the fracture surface of the specimens, the bonding performance is great between the binder and the aggregate at different temperatures. The tensile strength and elastic modulus of MPUC decrease with increasing temperatures, while the fracture strain, and fracture energy increase with increasing temperatures. The formulas of temperature-dependent tensile strength, fracture strain, and elastic modulus of MPUC were established, and the constitutive relationship of MPUC is further constructed in the rising stage under uniaxial tension. The calculation results show good agreement with experimental ones.

3.
Sensors (Basel) ; 19(8)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022929

ABSTRACT

The slip angle and attitude are vital for automated driving. In this paper, a systematic inertial measurement unit (IMU)-based vehicle slip angle and attitude estimation method aided by vehicle dynamics is proposed. This method can estimate the slip angle and attitude simultaneously and autonomously. With accurate attitude, the slip angle can be estimated precisely even though the vehicle dynamic model (VDM)-based velocity estimator diverges for a short time. First, the longitudinal velocity, pitch angle, lateral velocity, and roll angle were estimated by two estimators based on VDM considering the lever arm between the IMU and rotation center. When this information was in high fidelity, it was applied to aid the IMU-based slip angle and attitude estimators to eliminate the accumulated error correctly. Since there is a time delay in detecting the abnormal estimation results from VDM-based estimators during critical steering, a novel delay estimation and prediction structure was proposed to avoid the outlier feedback from vehicle dynamics estimators for the IMU-based slip angle and attitude estimators. Finally, the proposed estimation method was validated under large lateral excitation experimental tests including double lane change (DLC) and slalom maneuvers.

SELECTION OF CITATIONS
SEARCH DETAIL
...