Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Bioprocess Biosyst Eng ; 44(4): 891-899, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33486578

ABSTRACT

Cadaverine, 1,5-diaminopentane, is one of the most promising chemicals for biobased-polyamide production and it has been successfully produced up to molar concentration. Pyridoxal 5'-phosphate (PLP) is a critical cofactor for inducible lysine decarboxylase (CadA) and is required up to micromolar concentration level. Previously the regeneration of PLP in cadaverine bioconversion has been studied and salvage pathway pyridoxal kinase (PdxY) was successfully introduced; however, this system also required a continuous supply of adenosine 5'-triphosphate (ATP) for PLP regeneration from pyridoxal (PL) which add in cost. Herein, to improve the process further a method of ATP regeneration was established by applying baker's yeast with jhAY strain harboring CadA and PdxY, and demonstrated that providing a moderate amount of adenosine 5'-triphosphate (ATP) with the simple addition of baker's yeast could increase cadaverine production dramatically. After optimization of reaction conditions, such as PL, adenosine 5'-diphosphate, MgCl2, and phosphate buffer, we able to achieve high production (1740 mM, 87% yield) from 2 M L-lysine. Moreover, this approach could give averaged 80.4% of cadaverine yield after three times reactions with baker's yeast and jhAY strain. It is expected that baker's yeast could be applied to other reactions requiring an ATP regeneration system.


Subject(s)
Adenosine Triphosphate/metabolism , Cadaverine/chemistry , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Saccharomyces cerevisiae , Agar/chemistry , Biotechnology/methods , Biotransformation , Cadaverine/metabolism , Carboxy-Lyases , Fermentation , Industrial Microbiology/instrumentation , Industrial Microbiology/methods , Lysine/chemistry , Lysine/metabolism , Polymers/chemistry , Pyridoxal , Regeneration
2.
Enzyme Microb Technol ; 140: 109643, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32912695

ABSTRACT

Pipecolic acid, a non-proteinogenic amino acid, is a metabolite in lysine metabolism and a key chiral precursor in local anesthesia and macrolide antibiotics. To replace the environmentally unfriendly chemical production or preparation procedure of pipecolic acid, many biological synthetic routes have been studied for a long time. Among them, synthesis by lysine cyclodeaminase (LCD), encoded by pipA, has several advantages, including stability of enzyme activity and NAD+ self-regeneration. Thus, we selected this enzyme for pipecolic acid biosynthesis in a whole-cell bioconversion. To construct a robust pipecolic acid production system, we investigated important conditions including expression vector, strain, culture conditions, and other reaction parameters. The most important factor was the introduction of multiple pipA genes into the whole-cell system. As a result, we produced 724 mM pipecolic acid (72.4 % conversion), and the productivity was 0.78 g/L/h from 1 M l-lysine after 5 days. This is the highest production reported to date.


Subject(s)
Ammonia-Lyases/genetics , Escherichia coli/metabolism , Pipecolic Acids/metabolism , Ammonia-Lyases/metabolism , Biotransformation , Culture Media/chemistry , Escherichia coli/genetics , Fermentation , Gene Expression , Lysine/analysis , Lysine/metabolism , Metabolic Engineering , Metals/analysis , Metals/metabolism , Tandem Repeat Sequences , Time Factors
3.
J Biotechnol ; 322: 21-28, 2020 Oct 10.
Article in English | MEDLINE | ID: mdl-32653639

ABSTRACT

Bacteria from the genus Halomonas hold promise in biotechnology as sources of salt-tolerant enzymes, biosurfactants, biopolymers, osmolytes, and as actors in bioremediation processes. In a previous work, we have identified Halomonas socia strain CKY01 having various hydrolase activities. Here, we aimed to study the survival strategies of marine bacteria. A deep genome sequencing study of H. socia CKY01 has revealed 4627 genes reaching 4,753,299 bp with 64 % of GC content. This strain produced polyhydroxybutyrate (PHB) having one gene clusters having phaC and phasin, and it has several genes responsible for the uptake, synthesis, and transport of the osmolytes such as betaine, choline, ectoine, carnitine, and proline in the bacterial genome. The addition of 60 mM glutamate, 60 mM proline and 60 mM ectoine enhanced growth 300.8 %, 294.2 % and 235.0 %, respectively, under 10 % saline conditions. In particular, ectoine and proline increased salt resistance and allowed cells to survive in more than 15 % NaCl. By combining experimental and genome sequencing data, we have investigated the importance of osmolytes on the survival of this Halomonas strain.


Subject(s)
Genome, Bacterial/genetics , Halomonas , Salt Tolerance , Amino Acids, Diamino/pharmacology , Halomonas/drug effects , Halomonas/genetics , Halomonas/physiology , Osmolar Concentration , Proline/pharmacology , Salinity , Salt Tolerance/drug effects , Salt Tolerance/physiology , Sodium Chloride/pharmacology , Whole Genome Sequencing
4.
J Microbiol Biotechnol ; 30(5): 785-792, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32482946

ABSTRACT

L-Theanine, found in green tea leaves has been shown to positively affect immunity and relaxation in humans. There have been many attempts to produce L-theanine through enzymatic synthesis to overcome the limitations of traditional methods. Among the many genes coding for enzymes in the L-theanine biosynthesis, glutamylmethylamide synthetase (GMAS) exhibits the greatest possibility of producing large amounts of production. Thus, GMAS from Methylovorus mays No. 9 was overexpressed in several strains including vectors with different copy numbers. BW25113(DE3) cells containing the pET24ma::gmas was selected for strains. The optimal temperature, pH, and metal ion concentration were 50°C, 7, and 5 mM MnCl2, respectively. Additionally, ATP was found to be an important factor for producing high concentration of L-theanine so several strains were tested during the reaction for ATP regeneration. Bakers yeast was found to decrease the demand for ATP most effectively. Addition of potassium phosphate source was demonstrated by producing 4-fold higher L-theanine. To enhance the conversion yield, GMAS was additionally overexpressed in the system. A maximum of 198 mM L-theanine was produced with 16.5 mmol/l/h productivity. The whole-cell reaction involving GMAS has greatest potential for scale-up production of L-theanine.


Subject(s)
Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/metabolism , Escherichia coli/metabolism , Glutamates/metabolism , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Carbon-Nitrogen Ligases/genetics , Culture Media/chemistry , Culture Media/metabolism , Escherichia coli/genetics , Metabolic Engineering , Methylophilaceae/enzymology , Methylophilaceae/genetics
5.
AMB Express ; 10(1): 64, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32266584

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) strains are distinct from general Staphylococcus strains with respect to the composition of the membrane, ability to form a thicker biofilm, and, importantly, ability to modify the target of antibiotics to evade their activity. The agr gene is an accessory global regulator of gram-positive bacteria that governs virulence or resistant mechanisms and therefore an important target for the control of resistant strains. However, the mechanism by which agr impacts resistance to ß-lactam antibiotics remains unclear. In the present study, we found the Δagr mutant strain having higher resistance to high concentrations of ß-lactam antibiotics such as oxacillin and ampicillin. To determine the influence of variation in the microenvironment of cells between the parental and mutant strains, fatty acid analysis of the supernatant, total lipids, and phospholipid fatty acids were compared. The Δagr mutant strain tended to produce fewer fatty acids and retained lower amounts of C16, C18 fatty acids in the supernatant. Phospholipid analysis showed a dramatic increase in the hydrophobic longer-chain fatty acids in the membrane. To target membrane, we applied several surfactants and found that sorbitan monolaurate (Span20) had a synergistic effect with oxacillin by decreasing biofilm formation and growth. These findings indicate that agr deletion allows for MRSA to resist antibiotics via several changes including constant expression of mecA, fatty acid metabolism, and biofilm thickening.

6.
Anal Biochem ; 597: 113688, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32194075

ABSTRACT

Glutaric acid is a precursor of a plasticizer that can be used for the production of polyester amides, ester plasticizer, corrosion inhibitor, and others. Glutaric acid can be produced either via bioconversion or chemical synthesis, and some metabolites and intermediates are produced during the reaction. To ensure reaction efficiency, the substrates, intermediates, and products, especially in the bioconversion system, should be closely monitored. Until now, high performance liquid chromatography (HPLC) has generally been used to analyze the glutaric acid-related metabolites, although it demands separate time-consuming derivatization and non-derivatization analyses. To substitute for this unreasonable analytical method, we applied herein a gas chromatography - mass spectrometry (GC-MS) method with ethyl chloroformate (ECF) derivatization to simultaneously monitor the major metabolites. We determined the suitability of GC-MS analysis using defined concentrations of six metabolites (l-lysine, cadaverine, 5-aminovaleric acid, 2-oxoglutaric acid, glutamate, and glutaric acid) and their mass chromatograms, regression equations, regression coefficient values (R2), dynamic ranges (mM), and retention times (RT). This method successfully monitored the production process in complex fermentation broth.


Subject(s)
Formic Acid Esters/metabolism , Glutarates/metabolism , Lysine/metabolism , Chromatography, High Pressure Liquid , Fermentation , Formic Acid Esters/chemistry , Gas Chromatography-Mass Spectrometry , Glutarates/chemistry , Lysine/chemistry , Molecular Structure
7.
Int J Biol Macromol ; 154: 929-936, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32198033

ABSTRACT

Polyhydroxyalkanoates (PHA), such as poly (3-hydroxybutyrate) (PHB), have emerged as potential alternatives to petroleum-based plastics and can be produced through the appropriate selection of marine bacteria that are already adapted to high salt and low temperature conditions without the requirement of antibiotic treatment. The present study, thus, aimed to screen and characterize thirteen PHA-producing microbial strains isolated from the Gwangalli beach in Busan, South Korea. Among them, Halomonas sp. YLGW01 produced the highest amount of PHB (94.6 ± 1.8% (w/w)) using fructose. Interestingly Halomonas sp. YLGW01 showed increase in cell size (8.39 ± 3.63 µm) with fructose as carbon source as compared to glucose (2.34 ± 0.44 µm). Fructose syrup was investigated as carbon source under unsterilized conditions and 95.26 ± 1.78% of PHB was produced. Overall, this strain showed the highest PHB contents in halotolerant bacteria.


Subject(s)
Halomonas/metabolism , Hydroxybutyrates/metabolism , Polyesters/metabolism , Carbon/metabolism , Halomonas/classification , Phylogeny , Republic of Korea , Soil Microbiology
8.
Bioresour Technol ; 302: 122872, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32014731

ABSTRACT

In this study, a heterogeneous catalyst prepared by pyrolysis of waste cork (Quercus suber) was used for the transesterification of waste cooking oil (WCO). Physicochemical properties of the synthesized biochar catalyst were studied using BET, SEM, FTIR, and XRD. The experiment results demonstrate that heterogeneous catalyst synthesized at 600 °C showed maximum fatty acids methyl esters (FAMEs) conversion (98%) at alcohol:oil (25:1), catalyst loading (1.5% w/v) and temperature 65 °C. Biodiesel produced from WCO (Canola oil) mainly composed of FAMEs in following order C18:1 > C18:2 > C16:0 > C18:0 > C20:0. Properties of produced biodiesel were analysed as cetane number (CN) 50.56, higher heating value (HHV) 39.5, kinematic viscosity (ʋ) 3.9, and density (ρ) 0.87.


Subject(s)
Biofuels , Charcoal , Catalysis , Cooking , Esterification , Plant Oils
9.
Bioprocess Biosyst Eng ; 43(5): 909-918, 2020 May.
Article in English | MEDLINE | ID: mdl-31989256

ABSTRACT

Bacteria have evolved a defense system to resist external stressors, such as heat, pH, and salt, so as to facilitate survival in changing or harsh environments. However, the specific mechanisms by which bacteria respond to such environmental changes are not completely elucidated. Here, we used halotolerant bacteria as a model to understand the mechanism conferring high tolerance to NaCl. We screened for genes related to halotolerance in Halomonas socia, which can provide guidance for practical application. Phospholipid fatty acid analysis showed that H. socia cultured under high osmotic pressure produced a high portion of cyclopropane fatty acid derivatives, encoded by the cyclopropane-fatty acid-acyl phospholipid synthase gene (cfa). Therefore, H. socia cfa was cloned and introduced into Escherichia coli for expression. The cfa-overexpressing E. coli strain showed better growth, compared with the control strain under normal cultivation condition as well as under osmotic pressure (> 3% salinity). Moreover, the cfa-overexpressing E. coli strain showed 1.58-, 1.78-, 3.3-, and 2.19-fold higher growth than the control strain in the presence of the inhibitors furfural, 4-hydroxybenzaldehyde, vanillin, and acetate from lignocellulosic biomass pretreatment, respectively. From a practical application perspective, cfa was co-expressed in E. coli with the polyhydroxyalkanoate (PHA) synthetic operon of Ralstonia eutropha using synthetic and biosugar media, resulting in a 1.5-fold higher in PHA production than that of the control strain. Overall, this study demonstrates the potential of the cfa gene to boost cell growth and production even in heterologous strains under stress conditions.


Subject(s)
Bacterial Proteins , Escherichia coli , Gene Expression , Methyltransferases , Microorganisms, Genetically-Modified , Osmotic Pressure/drug effects , Sodium Chloride/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Cupriavidus necator/enzymology , Cupriavidus necator/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Halomonas/enzymology , Halomonas/genetics , Methyltransferases/biosynthesis , Methyltransferases/genetics , Microorganisms, Genetically-Modified/enzymology , Microorganisms, Genetically-Modified/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
10.
Bioresour Technol ; 297: 122472, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31791917

ABSTRACT

The present study enlightens facile synthesis and characterization of magnetic biochar derived from waste banana pseudostem biomass for the removal of nitrofuran antibiotic 'furazolidone' (FZD). Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), magnetic hysteresis, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) revealed successful hybridization of magnetic nanocomposites with biochar (BPB600). The maximum adsorption capacity of magnetic BPB600 was 96.81% (37.86 mg g-1), which was significantly higher than the non-coated BPB600 (77.25%; 31.45 mg g-1). Adsorption kinetics data fitted well with pseudo-second order, and Elovich model demonstrating dominance of the chemisorption mechanism. Furthermore, the response surface methodology (RSM) was applied to evaluate the interactive effect of pH, temperature, and FZD concentration on adsorption. Therefore, the results of present study would provide an effective strategy to tackle antibiotic contaminants responsible for the antibiotic resistance genes or bacteria that decreases the therapeutic value of antibiotics.


Subject(s)
Musa , Nanocomposites , Water Pollutants, Chemical , Adsorption , Charcoal , Furazolidone , Kinetics , Magnetic Phenomena , Spectroscopy, Fourier Transform Infrared
11.
Enzyme Microb Technol ; 133: 109446, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31874692

ABSTRACT

Glutaric acid is a C5 dicarboxylic acid that can be used as a building block for bioplastics. Although high concentrations of glutaric acid can be produced by fermentation or bioconversion, a large amount of α-ketoglutaric acid (α-KG) is necessary to accept the amine group from 5-aminovaleric acid. To decrease the demand for α-KG, we introduced l-glutamate oxidase (GOX) from Streptomyces mobaraensis in our previous system for cofactor regeneration in combination with a glutaric acid production system from 5-aminovaleric acid. To enhance glutaric acid production, critical factors were optimized such as the expression vector, pH, temperature, and cell ratio. As a result, the demand for α-KG was decreased by more than 6-fold under optimized conditions. Additionally, the effect of catalase was also demonstrated by blocking the degradation of α-KG to succinic acid because of the hydrogen peroxide. Finally, 468.5 mM glutaric acid was produced from 800 mM 5-aminovaleric acid using only 120 mM α-KG. Moreover, this system containing davBA, gabTD-nox, and gox can be applied to produce glutaric acid from L-lysine by reusing α-KG with GOX. This improved cofactor regeneration system has a potential to apply much larger production of glutaric acid.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Escherichia coli/enzymology , Glutarates/metabolism , Ketoglutaric Acids/metabolism , Catalase/metabolism , Escherichia coli/genetics , Fermentation , Metabolic Engineering/methods
12.
Bioelectrochemistry ; 130: 107329, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31325898

ABSTRACT

Incessant depletion of non-renewable energy sources has gained attention to search for new biological systems to transform organic biomass into electricity using microbial fuel cell (MFC). The main approach of the existing study was to develop a single step process to produce electrical energy from underutilized chitin biomass. Halophilic bacterium Bacillus circulans BBL03 isolated from anodic biofilm showed higher electricity production (26.508 µAcm2) in a natural seawater medium fed with 1.0% chitin. Maximum chitinase activity (94.24 ±â€¯4.2 U mL-1) and N-acetylglucosamine (GlcNAc) production (136.30 ±â€¯2.8 mg g-1 chitin) were achieved at 48 h. Prominent metabolites detected in chitin hydrolysis were lactate, formate, acetate, propionate, and butyrate. Furthermore, cyclic voltammetry (CV) studies revealed the possibility of direct electron transfer by anodic biofilm to anode without any external redox mediators. Polarization and coulombic efficiency (CE) analysis showed maximum power density (PD) 1.742 mWcm2 and 47% CE using 1% chitin as a substrate. Alteration in crystallinity and functional group on chitin were analysed using FTIR and XRD. Therefore, natural seawater-chitin powered MFCs could be a cheap asset for longer electricity production.


Subject(s)
Bacillus/physiology , Bioelectric Energy Sources/microbiology , Chitin/metabolism , Bacillus/isolation & purification , Biofilms , Biomass , Electricity , Electrodes/microbiology , Equipment Design , Seawater/microbiology
13.
Bioresour Technol ; 289: 121704, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31276990

ABSTRACT

Rhodococcus sp. YHY01 was studied to utilize various lignin derived aromatic compounds. It was able to utilize p-coumaric acid, cresol, and 2,6 dimethoxyphenol and resulted in biomass production i.e. 0.38 g dcw/L, 0.25 g dcw/L and 0.1 g dcw/L, and lipid accumulation i.e. 49%, 40%, 30%, respectively. The half maximal inhibitory concentration (IC50) value for p-coumaric acid (13.4 mM), cresol (7.9 mM), and 2,6 dimethoxyphenol (3.4 mM) was analyzed. Dimethyl sulfoxide (DMSO) solubilized barley straw lignin fraction was used as a carbon source for Rhodococcus sp. YHY01 and resulted in 0.130 g dcw/L with 39% w/w lipid accumulation. Major fatty acids were palmitic acid (C16:0) 51.87%, palmitoleic acid (C16:l) 14.90%, and oleic acid (C18:1) 13.76%, respectively. Properties of biodiesel produced from barley straw lignin were as iodine value (IV) 27.25, cetane number (CN) 65.57, cold filter plugging point (CFPP) 14.36, viscosity (υ) 3.81, and density (ρ) 0.86.


Subject(s)
Biofuels , Hordeum/chemistry , Lignin/metabolism , Rhodococcus/metabolism , Biomass , Fatty Acids/metabolism , Lignin/chemistry
14.
Enzyme Microb Technol ; 128: 72-78, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31186113

ABSTRACT

Glutaric acid is an attractive C5 dicarboxylic acid with wide applications in the biochemical industry. Glutaric acid can be produced by fermentation and bioconversion, and several of its biosynthesis pathways have been well characterized, especially the simple pathway involving glutaric acid from l-lysine using 5-aminovaleric acid. We previously reported the production of glutaric acid using 5-aminovaleric acid and α-ketoglutaric acid by a whole-cell reaction, resulting in a high conversion yield. In this study, we sought to enhance the stability and reusability of this whole-cell system for realizing the efficient production of glutaric acid under harsh reaction conditions. To this end, various matrices were screened to immobilize Escherichia coli whole-cell overexpressing 4-aminobutyrate aminotransferase (GabT), succinate semi-aldehyde dehydrogenase (GabD), and NAD(P)H oxidase (NOX). We ultimately selected a PVA-PEG gel (LentiKats®) for cell entrapment, and several factors of the reaction were optimized. The optimal temperature and pH were 35 °C and 8.5, respectively. Treatment with Tween 80 as a surfactant, as well as additional NOX, was found to be effective. Under the optimized conditions, an immobilized cell retained 55% of its initial activity even after the eighth cycle, achieving 995.2 mM accumulated glutaric acid, whereas free cell lost most of their activity after only two cycles. This optimized whole-cell system can be used in the large-scale production of glutaric acid.


Subject(s)
Amino Acids, Neutral/metabolism , Cells, Immobilized/metabolism , Escherichia coli/metabolism , Glutarates/metabolism , Biotransformation , Escherichia coli/enzymology , Gels , Hydrogen-Ion Concentration , Polyethylene Glycols , Polyvinyl Alcohol , Temperature
15.
Enzyme Microb Technol ; 127: 58-64, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31088617

ABSTRACT

Cadaverine, also known as 1,5-pentanediamine, is an important platform chemical with a wide range of applications and can be produced either by fermentation or bioconversion. Bioconversion of cadaverine from l-lysine is the preferred method because of its many benefits, including rapid reaction time and an easy downstream process. In our previous study, we replaced pyridoxal-5-phosphate (PLP) with pyridoxal kinase (PdxY) along with pyridoxal (PL) because it could achieve 80% conversion with 0.4 M of l-lysine in 6 h. However, conversion was sharply decreased in the presence of high concentrations of l-lysine (i.e., 1 M), resulting in less than 40% conversion after several hours. In this study, we introduced an ATP regeneration system using polyphosphate kinase (ppk) into systems containing cadaverine decarboxylase (CadA) and PdxY for a sufficient supply of PLP, which resulted in enhanced cadaverine production. In addition, to improve transport efficiency, the use of surfactants was tested. We found that membrane permeabilization via hexadecyltrimethylammonium bromide (CTAB) increased the yield of cadaverine in the presence of high concentrations of l-lysine. By combining these two strategies, the ppk system and addition of CTAB, we enhanced cadaverine production up to 100% with 1 M of l-lysine over the course of 6 h.


Subject(s)
Adenosine Triphosphate/metabolism , Cadaverine/metabolism , Cetrimonium/metabolism , Escherichia coli/metabolism , Pyridoxal Phosphate/metabolism , Biotransformation , Escherichia coli/genetics , Phosphotransferases (Phosphate Group Acceptor)/metabolism
16.
Bioresour Technol ; 286: 121383, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31071574

ABSTRACT

Odd chain fatty acids serve as anti-allergic, anti-inflammatory, and antifungal agents, and are useful for the production of biodiesel. Rhodococcus sp. YHY01 utilizes a wide range of carbon sources and accumulate lipids i.e. fructose (37% w/w dcw) glucose (56% w/w dcw), glycerol (50% w/w dcw), acetate (42% w/w dcw), butyrate (65% w/w dcw), lactate (56% w/w dcw), and propionate (62% w/w dcw). In this study, propionate was proved as the best carbon source and produced 69% odd chain fatty acids of total fatty acids, followed by glycerol (13% odd chain fatty acids of total fatty acids). A synthetic medium optimized with response surface design containing glycerol, propionate, and ammonium chloride (0.32%:0.76%:0.040% w/v) facilitated the production of total fatty acids 69% w/w of dcw, and odd chain fatty acids comprised 85% w/w of total fatty acids. Major odd chain fatty acids were in the order C17:0 > C15:0 > Cis-10-C17:1 > 10Me-C17:0 > C19:0 > Cis-10-C19:1.


Subject(s)
Fatty Acids , Rhodococcus , Biofuels , Lipids , Propionates
SELECTION OF CITATIONS
SEARCH DETAIL
...