Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.372
Filter
1.
Abdom Radiol (NY) ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38831075

ABSTRACT

OBJECTIVE: To investigate the feasibility and accuracy of predicting locoregional recurrence (LR) in elderly patients with esophageal squamous cell cancer (ESCC) who underwent radical radiotherapy using a pairwise machine learning algorithm. METHODS: The 130 datasets enrolled were randomly divided into a training set and a testing set in a 7:3 ratio. Clinical factors were included and radiomics features were extracted from pretreatment CT scans using pyradiomics-based software, and a pairwise naive Bayes (NB) model was developed. The performance of the model was evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). To facilitate practical application, we attempted to construct an automated esophageal cancer diagnosis system based on trained models. RESULTS: To the follow-up date, 64 patients (49.23%) had experienced LR. Ten radiomics features and two clinical factors were selected for modeling. The model demonstrated good prediction performance, with area under the ROC curve of 0.903 (0.829-0.958) for the training cohort and 0.944 (0.849-1.000) for the testing cohort. The corresponding accuracies were 0.852 and 0.914, respectively. Calibration curves showed good agreement, and DCA curve confirmed the clinical validity of the model. The model accurately predicted LR in elderly patients, with a positive predictive value of 85.71% for the testing cohort. CONCLUSIONS: The pairwise NB model, based on pre-treatment enhanced chest CT-based radiomics and clinical factors, can accurately predict LR in elderly patients with ESCC. The esophageal cancer automated diagnostic system embedded with the pairwise NB model holds significant potential for application in clinical practice.

2.
Aging (Albany NY) ; 16(9): 8279-8305, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728370

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are one of the most predominant cellular subpopulations in the tumor stroma and play an integral role in cancer occurrence and progression. However, the prognostic role of CAFs in breast cancer remains poorly understood. METHODS: We identified a number of CAF-related biomarkers in breast cancer by combining single-cell and bulk RNA-seq analyses. Based on univariate Cox regression as well as Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, a novel CAF-associated prognostic model was developed. Breast cancer patients were grouped according to the median risk score and further analyzed for outcome, clinical characteristic, pathway activity, genomic feature, immune landscape, and drug sensitivity. RESULTS: A total of 341 CAF-related biomarkers were identified from single-cell and bulk RNA-seq analyses. We eventually screened eight candidate prognostic genes, including CERCAM, EMP1, SDC1, PRKG1, XG, TNN, WLS, and PDLIM4, and constructed the novel CAF-related prognostic model. Grouped by the median risk score, high-risk patients showed a significantly worse prognosis and exhibited distinct pathway activities such as uncontrolled cell cycle progression, angiogenesis, and activation of glycolysis. In addition, the combined risk score and tumor mutation burden significantly improved the ability to predict patient prognosis. Importantly, patients in the high-risk group had a higher infiltration of M2 macrophages and a lower infiltration of CD8+ T cells and activated NK cells. Finally, we calculated the IC50 for a range of anticancer drugs and personalized the treatment regimen for each patient. CONCLUSION: Integrating single-cell and bulk RNA-seq analyses, we identified a list of compositive CAF-associated biomarkers and developed a novel CAF-related prognostic model for breast cancer. This robust CAF-derived gene signature acts as an excellent predictor of patient outcomes and treatment responses in breast cancer.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Cancer-Associated Fibroblasts , RNA-Seq , Single-Cell Analysis , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Cancer-Associated Fibroblasts/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Transcriptome , Gene Expression Profiling
4.
Heliyon ; 10(9): e29350, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38694110

ABSTRACT

Objectives: This study aimed to explore the spatial distribution of brain metastases (BMs) from breast cancer (BC) and to identify the high-risk sub-structures in BMs that are involved at first diagnosis. Methods: Magnetic resonance imaging (MRI) scans were retrospectively reviewed at our centre. The brain was divided into eight regions according to its anatomy and function, and the volume of each region was calculated. The identification and volume calculation of metastatic brain lesions were accomplished using an automatically segmented 3D BUC-Net model. The observed and expected rates of BMs were compared using 2-tailed proportional hypothesis testing. Results: A total of 250 patients with BC who presented with 1694 BMs were retrospectively identified. The overall observed incidences of the substructures were as follows: cerebellum, 42.1 %; frontal lobe, 20.1 %; occipital lobe, 9.7 %; temporal lobe, 8.0 %; parietal lobe, 13.1 %; thalamus, 4.7 %; brainstem, 0.9 %; and hippocampus, 1.3 %. Compared with the expected rate based on the volume of different brain regions, the cerebellum, occipital lobe, and thalamus were identified as higher risk regions for BMs (P value ≤ 5.6*10-3). Sub-group analysis according to the type of BC indicated that patients with triple-negative BC had a high risk of involvement of the hippocampus and brainstem. Conclusions: Among patients with BC, the cerebellum, occipital lobe and thalamus were identified as higher-risk regions than expected for BMs. The brainstem and hippocampus were high-risk areas of the BMs in triple negative breast cancer. However, further validation of this conclusion requires a larger sample size.

5.
Small ; : e2401713, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693076

ABSTRACT

Aqueous zinc-based energy storage devices possess superior safety, cost-effectiveness, and high energy density; however, dendritic growth and side reactions on the zinc electrode curtail their widespread applications. In this study, these issues are mitigated by introducing a polyimide (PI) nanofabric interfacial layer onto the zinc substrate. Simulations reveal that the PI nanofabric promotes a pre-desolvation process, effectively desolvating hydrated zinc ions from Zn(H2O)6 2+ to Zn(H2O)4 2+ before approaching the zinc surface. The exposed zinc ion in Zn(H2O)4 2+ provides an accelerated charge transfer process and reduces the activation energy for zinc deposition from 40 to 21 kJ mol-1. The PI nanofabric also acts as a protective barrier, reducing side reactions at the electrode. As a result, the PI-Zn symmetric cell exhibits remarkable cycling stability over 1200 h, maintaining a dendrite-free morphology and minimal byproduct formation. Moreover, the cell exhibits high stability and low voltage hysteresis even under high current densities (20 mA cm-2, 10 mAh cm-2) thanks to the 3D porous structure of PI nanofabric. When integrated into full cells, the PI-Zn||AC hybrid zinc-ion capacitor and PI-Zn||MnVOH@SWCNT zinc-ion battery achieve impressive lifespans of 15000 and 600 cycles with outstanding capacitance retention. This approach paves a novel avenue for high-performance zinc metal electrodes.

6.
Front Endocrinol (Lausanne) ; 15: 1336402, 2024.
Article in English | MEDLINE | ID: mdl-38742197

ABSTRACT

Diabetic kidney disease (DKD), a significant complication associated with diabetes mellitus, presents limited treatment options. The progression of DKD is marked by substantial lipid disturbances, including alterations in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Altered lipid metabolism serves as a crucial pathogenic mechanism in DKD, potentially intertwined with cellular ferroptosis, lipophagy, lipid metabolism reprogramming, and immune modulation of gut microbiota (thus impacting the liver-kidney axis). The elucidation of these mechanisms opens new potential therapeutic pathways for DKD management. This research explores the link between lipid metabolism disruptions and DKD onset.


Subject(s)
Diabetic Nephropathies , Lipid Metabolism , Humans , Diabetic Nephropathies/metabolism , Animals , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/complications , Gastrointestinal Microbiome
7.
J Colloid Interface Sci ; 669: 117-125, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38705111

ABSTRACT

Lithium cobalt phosphate (LiCoPO4) has great potential to be developed as a cathode material for lithium-ion batteries (LIBs) due to its structural stability and higher voltage platform with a high theoretical energy density. However, the relatively low diffusion of lithium ions still needs to be improved. In this work, Fe and Zn co-doped LiCoPO4: LiCo0.9-xFe0.1ZnxPO4/C is utilized to enhance the battery performance of LiCoPO4. The electrochemical properties of LiCo0.85Fe0.1Zn0.05PO4/C demonstrated an initial capacity of 118 mAh/g, with 93.4 % capacity retention at 1C after 100 cycles, and a good capacity of 87 mAh/g remained under a high current density of 10C. In addition, the diffusion rate of Li ions was investigated, proving the improvement of the materials with doping. The impedance results also showed a smaller resistance of the doped materials. Furthermore, operando X-ray diffraction displayed a good reversibility of the structural transformation, corresponding to cycling stability. This work provided studies of both the electrochemical properties and structural transformation of Fe and Zn co-doped LiCoPO4, which showed that 10 % Fe and 5 % Zn co-doping enhanced the electrochemical performance of LiCoPO4 as a cathode material in LIBs.

8.
Adv Mater ; : e2405763, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809945

ABSTRACT

Demetalation caused by the electrochemical dissolution of metallic Fe atoms is a major challenge for the practical application of Fe-N-C catalysts. Herein, we construct an efficient single metallic Mn active site to improve the strength of the Fe-N bond, inhibiting the demetalation effect of Fe-N-C. Mn acts as an electron donor inducing more delocalized electrons to reduce the oxidation state of Fe by increasing the electron density, thereby enhancing the Fe-N bond and inhibiting the electrochemical dissolution of Fe. The ORR pathway for the dissociation of Fe-Mn dual sites can overcome the high energy barriers to direct O-O bond dissociation and modulate the electronic states of Fe-N4 sites. The resulting FeMn-N-C exhibits excellent ORR activity with a high half-wave potential (E1/2) of 0.92 V in alkaline electrolytes. FeMn-N-C as a cathode catalyst for Zn-air batteries (ZABs) has a cycle stability of 700 h at 25 °C and a long cycle stability of more than 210 h under extremely cold conditions at -40 °C. These findings contribute to the development of efficient and stable metal-nitrogen-carbon catalysts for various energy devices. This article is protected by copyright. All rights reserved.

9.
J Colloid Interface Sci ; 670: 348-356, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38763030

ABSTRACT

The depressed directional separation of photogenerated carriers and weak CO2 adsorption/activation activity are the main factors hampering the development of artificial photosynthesis. Herein, Na ions are embedded in graphitic carbon nitride (g-C3N4) to achieve directional migration of the photogenerated electrons to Na sites, while the electron-rich Na sites enhance CO2 adsorption and activation. Na/g-C3N4 (NaCN) shows improved photocatalytic reduction activity of CO2 to CO and CH4, and under simulated sunlight irradiation, the CO yield of NaCN synthesized by embedding Na at 550°C (NaCN-550) is 371.2 µmol g-1 h-1, which is 58.9 times more than that of the monomer g-C3N4. By means of theoretical calculations and experiments including in situ fourier transform infrared spectroscopy, the mechanism is investigated. This strategy which improves carrier separation and reduces the energy barrier at the same time is important to the development of artificial photosynthesis.

10.
Org Lett ; 26(21): 4469-4474, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38767929

ABSTRACT

Using CRISPR-Cas9 technology and a microhomology-mediated end-joining repair system, we substituted genes of the gliotoxin pathway in Aspergillus fumigatus with genes responsible for chetomin biosynthesis from Chaetomium cochliodes, leading to the production of three new epipolythiodioxopiperazines (ETPs). This work represents the first successful endeavor to produce ETPs in a non-native host. Additionally, the simultaneous disruption of five genes in a single transformation marks the most extensive gene knockout event in filamentous fungi to date.


Subject(s)
Aspergillus fumigatus , Gliotoxin , Piperazines , Aspergillus fumigatus/metabolism , Aspergillus fumigatus/genetics , Piperazines/chemistry , Piperazines/metabolism , Gliotoxin/biosynthesis , Gliotoxin/chemistry , Molecular Structure , Chaetomium/metabolism , Chaetomium/chemistry , CRISPR-Cas Systems
11.
Redox Rep ; 29(1): 2345455, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38723197

ABSTRACT

OBJECTIVES: Cancer cells undergo metabolic reprogramming to adapt to high oxidative stress, but little is known about how metabolic remodeling enables gastric cancer cells to survive stress associated with aberrant reactive oxygen species (ROS) production. Here, we aimed to identify the key metabolic enzymes that protect gastric cancer (GC) cells from oxidative stress. METHODS: ROS level was detected by DCFH-DA probes. Multiple cell biological studies were performed to identify the underlying mechanisms. Furthermore, cell-based xenograft and patient-derived xenograft (PDX) model were performed to evaluate the role of MTHFD2 in vivo. RESULTS: We found that overexpression of MTHFD2, but not MTHFD1, is associated with reduced overall and disease-free survival in gastric cancer. In addition, MTHFD2 knockdown reduces the cellular NADPH/NADP+ ratio, colony formation and mitochondrial function, increases cellular ROS and cleaved PARP levels and induces in cell death under hypoxia, a hallmark of solid cancers and a common inducer of oxidative stress. Moreover, genetic or pharmacological inhibition of MTHFD2 reduces tumor burden in both tumor cell lines and patient-derived xenograft-based models. DISCUSSION: our study highlights the crucial role of MTHFD2 in redox regulation and tumor progression, demonstrating the therapeutic potential of targeting MTHFD2.


Subject(s)
Methylenetetrahydrofolate Dehydrogenase (NADP) , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species , Stomach Neoplasms , Humans , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Animals , Mice , Reactive Oxygen Species/metabolism , Multifunctional Enzymes/metabolism , Multifunctional Enzymes/genetics , Cell Line, Tumor , Homeostasis , Aminohydrolases/metabolism , Aminohydrolases/genetics , Disease Progression , Xenograft Model Antitumor Assays
12.
Mater Today Bio ; 26: 101082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38774449

ABSTRACT

Hydrogel presents a three-dimensional polymer network with high water content. Over the past decade, hydrogel has developed from static material to intelligent material with controllable response. Various stimuli are involved in the formation of hydrogel network, among which photo-stimulation has attracted wide attention due to the advantages of controllable conditions, which has a good application prospect in the treatment of ophthalmic diseases. This paper reviews the application of photo-crosslink hydrogels in ophthalmology, focusing on the types of photo-crosslink hydrogels and their applications in ophthalmology, including drug delivery, tissue engineering and 3D printing. In addition, the limitations and future prospects of photo-crosslink hydrogels are also provided.

13.
Org Biomol Chem ; 22(20): 4036-4040, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38698770

ABSTRACT

An unprecedented Ir(III)-catalyzed C-H activation/amination/annulation of 2-phenyloxazoles with anthranils for the highly selective preparation of acridone derivatives in one-pot under controlled conditions is reported. This protocol is characterized by atom economy and high regioselectivity. A wide range of anthranils with 2-phenyloxazoles were well tolerated and afforded the desired products in moderate to good yields, in which the anthranil serves as a convenient amination reagent.

14.
Cancer Immunol Immunother ; 73(6): 99, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619623

ABSTRACT

PURPOSE: Neoadjuvant PD-1 blockade combined with chemotherapy is a promising treatment for resectable non-small cell lung cancer (NSCLC), yet the immunological mechanisms contributing to tumor regression and biomarkers corresponding to different pathological responses remain unclear. METHODS: Using dynamic and paired blood samples from NSCLC patients receiving neoadjuvant chemoimmunotherapy, we analyzed the frequencies of CD8 + T-cell and Treg subsets and their dynamic changes during neoadjuvant treatment through flow cytometry. Cytokine profiles and function-related gene expression of CD8 + T cells and Tregs were analyzed through flow cytometry and mRNA-seq. Infiltrating T-cell subsets in resected tissues from patients with different pathological responses were analyzed through multiplex immunofluorescence. RESULTS: Forty-two NSCLC patients receiving neoadjuvant chemoimmunotherapy were enrolled and then underwent surgical resection and pathological evaluation. Nineteen patients had pCR (45%), 7 patients had MPR (17%), and 16 patients had non-MPR (38%). In patients with pCR, the frequencies of CD137 + CD8 + T cells (P = 0.0475), PD-1 + Ki-67 + CD8 + T cells (P = 0.0261) and Tregs (P = 0.0317) were significantly different from those of non-pCR patients before treatment. pCR patients usually had low frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs, and their AUCs were higher than that of tissue PD-L1 expression. Neoadjuvant chemoimmunotherapy markedly improved CD8 + T-cell proliferation and activation, especially in pCR patients, as the frequencies of CD137 + CD8 + (P = 0.0136) and Ki-67 + CD8 + (P = 0.0391) T cells were significantly increased. The blood levels of cytokines such as IL-2 (P = 0.0391) and CXCL10 (P = 0.0195) were also significantly increased in the pCR group, which is consistent with the high density of activated cytotoxic T cells at the tumor site (P < 0.0001). CONCLUSION: Neoadjuvant chemoimmunotherapy drives CD8 + T cells toward a proliferative and active profile. The frequencies of CD137 + CD8 + T cells, PD-1 + Ki-67 + CD8 + T cells and Tregs at baseline might predict the response to neoadjuvant chemoimmunotherapy in NSCLC patients. The increase in IL-2 and CXCL10 might reflect the chemotaxis and enrichment of cytotoxic T cells at the tumor site and a better response to neoadjuvant chemoimmunotherapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Neoadjuvant Therapy , Cytokines , Interleukin-2 , Ki-67 Antigen , Programmed Cell Death 1 Receptor , Lung Neoplasms/drug therapy , T-Lymphocyte Subsets
15.
Structure ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38626767

ABSTRACT

Nectin and nectin-like (Necl) co-receptor axis, comprised of receptors DNAM-1, TIGIT, CD96, PVRIG, and nectin/Necl ligands, is gaining prominence in immuno-oncology. Within this axis, the inhibitory receptor PVRIG recognizes Nectin-2 with high affinity, but the underlying molecular basis remains unknown. By determining the crystal structure of PVRIG in complex with Nectin-2, we identified a unique CC' loop in PVRIG, which complements the double-lock-and-key binding mode and contributes to its high affinity for Nectin-2. The association of the corresponding charged residues in the F-strands explains the ligand selectivity of PVRIG toward Nectin-2 but not for Necl-5. Moreover, comprehensive comparisons of the binding capacities between co-receptors and ligands provide innovative insights into the intra-axis immunoregulatory mechanism. Taken together, these findings broaden our understanding of immune recognition and regulation mediated by nectin/Necl co-receptors and provide a rationale for the development of immunotherapeutic strategies targeting the nectin/Necl axis.

16.
Sci Rep ; 14(1): 8988, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38637560

ABSTRACT

Esophageal adenocarcinoma is the most common histological subtype of esophageal cancer in Western countries and shows poor prognosis with rapid growth. EAC is characterized by a strong male predominance and racial disparity. EAC is up to fivefold more common among Whites than Blacks, yet Black patients with EAC have poorer survival rates. The racial disparity remains largely unknown, and there is limited knowledge of mutations in EAC regarding racial disparities. We used whole-exome sequencing to show somatic mutation profiles derived from tumor samples from 18 EAC male patients. We identified three molecular subgroups based on the pre-defined esophageal cancer-specific mutational signatures. Group 1 is associated with age and NTHL1 deficiency-related signatures. Group 2 occurs primarily in Black patients and is associated with signatures related to DNA damage from oxidative stress and NTHL1 deficiency-related signatures. Group 3 is associated with defective homologous recombination-based DNA often caused by BRCA mutation in White patients. We observed significantly mutated race related genes (LCE2B in Black, SDR39U1 in White) were (q-value < 0.1). Our findings underscore the possibility of distinct molecular mutation patterns in EAC among different races. Further studies are needed to validate our findings, which could contribute to precision medicine in EAC.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Female , Humans , Male , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Mutation , Black or African American , White , Exome Sequencing
17.
Materials (Basel) ; 17(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612218

ABSTRACT

Replacing cement with industrial by-products is an important way to achieve carbon neutrality in the cement industry. The purpose of this study is to evaluate the effect of eggshell powder on cement hydration properties, and to evaluate its feasibility as a substitute for cement. The substitution rates of eggshell powder are 0%, 7.5%, and 15%. Studying the heat of hydration and macroscopic properties can yield the following results. First: The cumulative heat of hydration based on each gram of cementitious material falls as the eggshell powder content rises. This is a result of the eggshell powder's diluting action. However, the cumulative heat of hydration per gram of cement rises due to the nucleation effect of the eggshell powder. Second: The compressive strengths of ES0, ES7.5, and ES15 samples at 28 days of age are 54.8, 43.4, and 35.5 MPa, respectively. Eggshell powder has a greater negative impact on the compressive strength. The effect of eggshell powder on the speed and intensity of ultrasonic waves has a similar trend. Third: As the eggshell powder content increases, the resistivity gradually decreases. In addition, we also characterize the microscopic properties of the slurry with added eggshell powder. X-ray Diffraction (XRD) shows that, as the age increases from 1 day to 28 days, hemicaboaluminate transforms into monocaboaluminate. As the content of the eggshell powder increases, FTIR analysis finds a slight decrease in the content of CSH. Similarly, thermogravimetric (TG) results also show a decrease in the production of calcium hydroxide. Although the additional nucleation effect of eggshell powder promotes cement hydration and generates more portlandite, it cannot offset the loss of portlandite caused by the decrease in cement. Last: A numerical hydration model is presented for cement-eggshell powder binary blends. The parameters of the hydration model are determined based on hydration heat normalized by cement mass. Moreover, the hydration heat until 28 days is calculated using the proposed model. The strength development of all specimens and all test ages can be expressed as an exponential function of hydration heat.

18.
J Biol Chem ; 300(6): 107311, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657866

ABSTRACT

The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.

19.
Comput Biol Med ; 174: 108457, 2024 May.
Article in English | MEDLINE | ID: mdl-38599071

ABSTRACT

Glioma is a common malignant brain tumor with great heterogeneity and huge difference in clinical outcomes. Although lymphotoxin (LT) beta receptor (LTBR) has been linked to immune system and response development for decades, the expression and function in glioma have not been investigated. To confirm the expression profile of LTBR, integrated RNA-seq data from glioma and normal brain tissues were analyzed. Functional enrichment analysis, TMEscore analysis, immune infiltration, the correlation of LTBR with immune checkpoints and ferroptosis, and scRNAseq data analysis in gliomas were in turn performed, which pointed out that LTBR was pertinent to immune functions of macrophages in gliomas. In addition, after being trained and validated in the tissue samples of the integrated dataset, an LTBR DNA methylation-based prediction model succeeded to distinguish gliomas from non-gliomas, as well as the grades of glioma. Moreover, by virtue of the candidate LTBR CpG sites, a prognostic risk-score model was finally constructed to guide the chemotherapy, radiotherapy, and immunotherapy for glioma patients. Taken together, LTBR is closely correlated with immune functions in gliomas, and LTBR DNA methylation could serve as a biomarker for diagnosis and prognosis of gliomas.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Glioma , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Brain Neoplasms/immunology , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , DNA Methylation/genetics , Glioma/immunology , Glioma/genetics , Glioma/metabolism
20.
ACS Nano ; 18(18): 11828-11836, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38659192

ABSTRACT

As essential primary producers, cyanobacteria play a major role in global carbon and nitrogen cycles. Though the influence of nanoplastics on the carbon metabolism of cyanobacteria is well-studied, little is known about how nanoplastics affect their nitrogen metabolism, especially under environmentally relevant nitrogen concentrations. Here, we show that nitrogen forms regulated growth inhibition, nitrogen consumption, and the synthesis and release of microcystin (MC) in Microcystis aeruginosa exposed to 10 µg/mL amino-modified polystyrene nanoplastics (PS-NH2) with a particle size of 50 nm under environmentally relevant nitrogen concentrations of nitrate, ammonium, and urea. We demonstrate that PS-NH2 inhibit M. aeruginosa differently in nitrate, urea, and ammonium, with inhibition rates of 51.87, 39.70, and 36.69%, respectively. It is caused through the differences in impairing cell membrane integrity, disrupting redox homeostasis, and varying nitrogen transport pathways under different nitrogen forms. M. aeruginosa respond to exposure of PS-NH2 by utilizing additional nitrogen to boost the production of amino acids, thereby enhancing the synthesis of MC, extracellular polymeric substances, and membrane phospholipids. Our results found that the threat of nanoplastics on primary producers can be regulated by the nitrogen forms in freshwater ecosystems, contributing to a better understanding of nanoplastic risks under environmentally relevant conditions.


Subject(s)
Microcystis , Nitrogen , Microcystis/drug effects , Microcystis/metabolism , Microcystis/growth & development , Nitrogen/chemistry , Nitrogen/metabolism , Microcystins/metabolism , Polystyrenes/chemistry , Particle Size , Microplastics/metabolism , Nanoparticles/chemistry , Nitrates/metabolism , Nitrates/chemistry , Urea/metabolism , Urea/chemistry , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...