Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Semin Arthritis Rheum ; 67: 152483, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38843569

ABSTRACT

OBJECTIVES: Rapidly progressive interstitial lung disease (RPILD) in patients with dermatomyositis (DM) significantly impacts prognosis, leading to high mortality rates. Although several indicators have been demonstrated to strongly correlate with the risk of developing RPILD, their clinical utility still needs to be investigated. The objective of this study was to investigate the clinical significance of soluble CXCL16 (sCXCL16) in DM patients complicated with RPILD. METHODS: Serum sCXCL16 was measured by enzyme-linked immunosorbent assay in 96 patients with DM and 55 matching healthy donors. Correlations between sCXCL16 levels and clinical features, laboratory examinations and the predictive value of baseline sCXCL16 level for RPILD were analysed. RESULTS: The serum sCXCL16 levels were significantly higher in patients with DM (n = 96, 3.264 ± 1.516 ng/mL) compared with healthy donors (n = 55, 1.781 ± 0.318 ng/mL), especially in DM complicated with RPILD (n = 31, 4.441 ± 1.706 ng/mL). The sCXCL16 levels were positively correlated with levels of serum ferritin, C reactive protein, erythrocyte sedimentation rate, lactate dehydrogenase, hydroxybutyrate dehydrogenase, and negatively correlated with peripheral lymphocytes percentage, but showed no correlation with levels of anti-melanoma differentiation-associated gene 5 antibody, Krebs von den Lungen-6 or creatine kinase. Multivariable analysis showed that elevated sCXCL16 was an independent prognostic factor for poor prognosis of RPILD in patients with DM. The 2-year survival rate was significantly lower in patients with high sCXCL16 level than in those with low sCXCL16 level. CONCLUSION: A higher serum sCXCL16 level was identified as a predictive biomarker of RPILD in patients with DM, and closely associated with poor prognosis.

2.
ACS Appl Mater Interfaces ; 16(20): 25909-25922, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716677

ABSTRACT

Indocyanine green (ICG), as the sole near-infrared dye FDA-approved, is limited in biomedical applications because of its poor photostability, lack of targeting, and rapid removal in vivo. Herein, we presented a nanoformulation of poly-l-lysine-indocyanine green-hyaluronic acid (PIH) and demonstrated that it can image orthodox endometriosis (EM) lesions with a negative contrast. The PIH nanocluster, with an average diameter of approximately 200 nm, exhibited improved fluorescence photostability and antioxidant ability compared to free ICG. In the in vivo imaging, EM lesions were visualized, featuring apparent voids and clear boundaries. After colocalizing with the green fluorescent protein, we concluded that the contrast provided by PIH peaked at 4 h postinjection and was observable for at least 8 h. The negative contrast, clear boundaries, and enhanced observable time might be due to the low permeation of PIH to lesions and the enhanced retention on the surfaces of lesions. Thus, our findings suggest an ICG-based nanoprobe with the potential to diagnose abdominal diseases.


Subject(s)
Endometriosis , Hyaluronic Acid , Indocyanine Green , Indocyanine Green/chemistry , Endometriosis/diagnostic imaging , Female , Animals , Hyaluronic Acid/chemistry , Humans , Mice , Polylysine/chemistry , Contrast Media/chemistry , Nanoparticles/chemistry , Optical Imaging , Fluorescent Dyes/chemistry
3.
J Colloid Interface Sci ; 670: 742-750, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38788441

ABSTRACT

Exploring highly efficient ultrasound-triggered catalysts is pivotal for various areas. Herein, we presented that Ba2+ doped brookite TiO2 nanorod (TiO2: Ba) with polarization-induced charge separation is a candidate. The replacement of Ba2+ for Ti4+ not only induced significant lattice distortion to induce polarization but also created oxygen vacancy defects for facilitating the charge separation, leading to high-efficiency reactive oxygen species (ROS) evolution in the piezo-catalytic processes. Furthermore, the piezocatalytic ability to degrade dye wastewater demonstrates a rate constant of 0.172 min-1 and achieves a 100 % antibacterial rate at a low dose for eliminating E. coli. This study advances that doping can induce piezoelectricity and reveals that lattice distortion-induced polarization and vacancy defects engineering can improve ROS production, which might impact applications such as water disinfection and sonodynamic therapy.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Nanotubes , Titanium , Titanium/chemistry , Titanium/pharmacology , Nanotubes/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli/drug effects , Ultrasonic Waves , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/chemistry , Microbial Sensitivity Tests , Surface Properties , Particle Size , Catalysis , Wastewater/chemistry
4.
Biomed Pharmacother ; 171: 116195, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262149

ABSTRACT

Our recent study showed that Nitazoxanide (NTZ), an FDA-approved anti-parasitic drug, prevents ovariectomy-induced bone loss by inhibiting osteoclast activity. However, there have been no investigations to determine whether NTZ has preventive potential in other bone resorbing diseases, especially rheumatoid arthritis (RA). In this study, the primary RA fibroblast-like synoviocytes (RA-FLS) and collagen-induced arthritis (CIA) murine model were used to evaluate the effect of NTZ. The results showed that NTZ potently inhibited proliferation, migration and invasion capacity of RA-FLS in a dose dependent manner by restraining cell entry into S phases, without induction of cell apoptosis. NTZ obviously reduced spontaneous mRNA expression of IL-1ß, IL-6 and RANKL, as well as TNF-α-induced transcription of the IL-1ß, IL-6, and MMP9 genes. In terms of molecular mechanism, NTZ significantly inhibited the basal or TNF-α-induced activation of JAK2/STAT3 (T705) and NF-κB pathway, but not MAPK and STAT3 (S727) phosphorylation. Moreover, NTZ ameliorated synovial inflammation and bone erosion in CIA mice through reducing the production of inflammatory mediators and osteoclast formation, respectively. Collectively, our findings indicate that NTZ exhibits anti-inflammatory and anti-erosive effects both ex vivo and in vivo, which provides promising evidence for the therapeutic application of NTZ as a novel therapeutic agent for RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Nitro Compounds , Synoviocytes , Thiazoles , Female , Mice , Animals , Synoviocytes/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Inflammation/metabolism , Fibroblasts , Cells, Cultured , Synovial Membrane/metabolism
5.
ACS Appl Mater Interfaces ; 16(3): 3126-3138, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38191301

ABSTRACT

Developing strategies for the treatment of bacterial biofilms is challenging due to their complex and resilient structure, low permeability to therapeutics, and ability to protect resident pathogens. Herein, we demonstrate that a polylysine-stabilized perfluorocarbon nanoemulsion is favored for penetrating biofilms and sensitizing the cavitation effect of low-intensity ultrasound, resulting in the dispersal of extracellular polymeric substances and killing of the protected cells. Through experiments, we observed a complete penetration of the nanoemulsion in a 40 µm Pseudomonas aeruginosa biofilm and demonstrated that it was induced by the fluidic perfluorocarbon, possibly attributing to its low surface tension. Furthermore, we presented an almost complete antibiofilm effect with a low-intensity ultrasound (1 MHz, 0.75 W/cm2, 5 min) in diverse cases, including cultured biofilms, colonized urinary catheters, and chronic wounds. During the treatment process, the perfluorocarbon phase enhanced the number and imploding energy of ultrasound cavities, thoroughly divided the biofilm structure, prevented biofilm self-healing, and sterilized the resident pathogens. Thus, the penetration and sensitization of the nanoemulsion might serve as a facile and potent strategy for eradicating biofilms in various applications.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Humans , Anti-Bacterial Agents/pharmacology , Biofilms , Light , Pseudomonas aeruginosa
6.
BMC Cardiovasc Disord ; 23(1): 464, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37715114

ABSTRACT

BACKGROUND: Mitochondrial myopathies (MMs) are a group of multi-system diseases caused by abnormalities in mitochondrial DNA (mtDNA) or mutations of nuclear DNA (nDNA). The diagnosis of mitochondrial myopathy (MM) is reliant on the combination of history and physical examination, muscle biopsy, histochemical studies, and next-generation sequencing. Patients with MMs have diverse clinical manifestations. In the contemporary literature, there is a paucity of reports on cardiac structure and function in this rare disease. We report a Chinese man with MM accompanied with both acute right heart failure and left ventricular hypertrophy. CASE PRESENTATION: A 49-year-old man presented with clinical features suggestive of MM, i.e., ophthalmoparesis, weakness of the pharyngeal and extremity muscles, and respiratory muscles which gradually progressed to respiratory insufficiency. He had a family history of mitochondrial myopathy. He had increased levels of serum creatine kinase and lactate. Muscle biopsy of left lateral thigh revealed 8% ragged red fibers (RRF) and 42% COX-negative fibers. Gene sequencing revealed a novel heterozygote TK2 variant (NM_001172644: c.584T>C, p.Leu195Pro) and another heterozygous variant (NM_004614.4:c.156+958G>A; rs1965661603) in the intron of TK2 gene. Based on these findings, we diagnosed the patient as a case of MM. Echocardiography revealed right heart enlargement, pulmonary hypertension, left ventricular hypertrophy, and thickening of the main pulmonary artery and its branches. The patient received non-invasive ventilation and coenzyme Q10 (CoQ10). The cardiac structure and function were restored at 1-month follow-up. CONCLUSIONS: This is the first report of reversible cardiac function impairment and left ventricular hypertrophy in a case of adult-onset MM, nocturnal hypoxia is a potential mechanism for left ventricular hypertrophy in patients with MM.


Subject(s)
Hypertrophy, Left Ventricular , Mitochondrial Myopathies , Adult , Male , Humans , Middle Aged , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/genetics , East Asian People , Heart , Mitochondrial Myopathies/complications , Mitochondrial Myopathies/diagnosis , Mitochondrial Myopathies/genetics , Cardiomegaly
7.
ACS Appl Mater Interfaces ; 15(27): 32697-32706, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37382894

ABSTRACT

Day-night photocatalysts that can persistently generate reactive oxygen species (ROS) after ceasing light attracted intensive attention in diverse fields. However, current strategies of combining a photocatalyst and an energy storage material can hardly fulfill the demands, especially in size. We herein present a one-phase sub-5 nm day-night photocatalyst via simply doping Nd, Tm, or Er into YVO4:Eu3+ nanoparticles, efficiently producing ROS in both day and night modes. We demonstrate that the rare earth ions acted as a ROS generator, and Eu3+ and defects contributed to the long persistency. Furthermore, the ultrasmall size led to remarkable bacterial uptake and bactericidal efficacy. Our finding suggests an alternative mechanism of day-night photocatalysts that could be ultrasmall and thus may shed light on disinfection and other applications.

8.
Chem Commun (Camb) ; 59(52): 8123-8126, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37306674

ABSTRACT

Phototoxicity is an undesirable consequence of photodynamic and most sonodynamic therapies. In the current work, we showed that Er2O3 nanoplates can avoid being cytotoxic when exposed to light and could be an effective sonosensitizer.

9.
RSC Adv ; 12(50): 32219-32229, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425700

ABSTRACT

Post-extraction, preventing the absorption of alveolar ridge to retain the supporting construction for implanted teeth is still a challenge. Herein, we developed modified chitosan (CS)-based hydrogel using N-hydroxysuccinimide-terminated 4-arm poly (ethylene glycol) (4-arm-PEG-NHS) as the crosslinking agent, after introducing it to the polyhexamethyleneguanidine hydrochloride (PHMB) solution, CS/PEG/PHMB hydrogel with the enhanced antibacterial properties was obtained. The CS/PEG hydrogel and CS/PEG/PHMB hydrogel prepared here showed excellent mechanical strength and their compressive strength could reach 440 kPa and 450 kPa, respectively. The composite hydrogel was designed to be directional porous, low cytotoxic, pH-sensitive, and degradable. The weight of the hydrogel was reduced by ∼30% after 28 days of incubation, and it swelled significantly in the acidic condition while it did not swell in the neutral and weakly alkaline environments, indicating an excellent biodegradability in the inflammation site. In vitro antibacterial experiments showed that the bacteriostatic rate of the CS/PEG/PHMB hydrogel against S. aureus was above 90%, which could effectively inhibit the spread of the bacteria and inflammation in the alveolar ridge. Additionally, the hybrid hydrogels demonstrated good biocompatibility with the NIH 3T3 fibroblast cells. Overall, the CS/PEG/PHMB hydrogel is a promising biological scaffold for maintaining the alveolar ridge and subsequently improving the success rate of the dental implant.

10.
Avian Pathol ; 51(5): 488-498, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35838631

ABSTRACT

Five novel chicken astrovirus (CAstV) strains, designated ZDF, MHC, WSC, WSW and MHW, were successfully isolated from chickens with gout, and were subjected to full genome sequencing characterization and tested for their pathogenic effects in specific pathogen-free (SPF) chicken embryos and chickens. The complete genomes of the five isolated strains were approximately 7436 nt to 7511 nt in length. Phylogenetic analysis revealed that strains ZDF and MHC were clustered in a clade with strains isolated in China and that the others were clustered with strains from other countries. Based on the amino acids of ORF2, strains MHW and WSW belonged to subgroup Ai, strain WSC belonged to Bii, and strains ZDF and MHC belonged to Bi. The pathogenicity of strains MHW, MHC and WSC, all belonging to different subgroups was studied. The results showed that the mortality of the chicken embryos was 100% when infected with any strain at a dose of more than 103 TCID50, 35% in SPF chickens infected with strain WSC, 25% with MHC and 15% with MHW. The body weights of chickens and embryos infected with 0.2 ml 10 TCID50 were significantly reduced after hatching. SPF chickens infected with any of the strains had similar lesions characterized by urate deposits on the epicardium and kidney, and necrotic spots on the liver. This study identified the three types of genotypic CAstV prevalent in China, with high mortality in embryonated chicken eggs and leading to white chick syndrome, retarded growth and visceral gout in infected chicks.


Subject(s)
Astroviridae Infections , Avastrovirus , Gout , Poultry Diseases , Animals , Astroviridae Infections/veterinary , Chick Embryo , Chickens , China/epidemiology , Genetic Variation , Gout/veterinary , Phylogeny , Virulence
11.
J Orthop Surg Res ; 16(1): 522, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34425863

ABSTRACT

PURPOSE: To explore the feasibility of sacral-2-alar (S2-alar) screw placement by measuring the length, diameter, and angle of the screw trajectory on computed tomography (CT). METHODS: This study selected 100 Han-nationality adults in northern China with a normal spine and pelvis. CT data were imported into PHILIPS software for reconstructing the 3D digital images. The optimal S2-alar screw trajectory was imitated on CT. Parameters including the length of the screw trajectory, sagittal angle, coronal angle, distance between the entry point and the spinous process, and minimum diameter of the screw trajectory were measured to evaluate the application of S2-alar screws. RESULTS: In total, 48 males and 52 females were included. The average length of the left screw trajectory was 47.18 ± 3.91 mm. The sagittal angle was 29.06 ± 4.00°. The coronal angle was 13.31 ± 6.95°. The distance between the entry point and the spinous process was 21.0 (3.7) mm. The minimum diameter of the screw trajectory was 17.1 (2.3) mm. The average length of the right screw trajectory was 45.46 ± 4.37 mm. The sagittal angle was 23.33 ± 4.26°. The coronal angle was 14.88 ± 6.84°. The distance between the entry point and the spinous process was 22.8 (2.9) mm. The minimum diameter of the screw trajectory was 16.9 (3.1) mm. In women, the average length of the left screw trajectory was 44.80 ± 3.66 mm. The sagittal angle was 32.14 ± 5.48°. The coronal angle was 16.04 ± 7.74°. The distance between the entry point and the spinous process was 21.8 (2.8) mm. The minimum diameter of the screw trajectory was 17.1 (5) mm. The average length of the right screw trajectory was 44.01 ± 3.72 mm. The sagittal angle was 25.12 ± 5.19. The coronal angle was 16.67 ± 8.34°. The distance between the entry point and the spinous process was 21.6 (2.7) mm. The minimum diameter of the screw trajectory was 17 (4.5) mm. As seen from the data, there were significant differences in the minimum diameter of the screw trajectory in both males and females. In females, there were also significant differences between the left and right sides in the coronal angle. Between males and females, there were statistically significant differences in the length of the screw trajectory. There were no statistically significant differences in the other parameters between males and females. CONCLUSION: The optimal screw trajectory of the S2-alar screw can be found on CT. The length and deflection angle of the screw meet the clinical requirements. This method is easy to perform and feasible for clinical application.


Subject(s)
Bone Screws , Sacrum , Female , Humans , Imaging, Three-Dimensional , Male , Pelvis , Sacrum/diagnostic imaging , Sacrum/surgery , Tomography, X-Ray Computed
12.
ACS Omega ; 6(24): 15885-15891, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34179632

ABSTRACT

Textile dyes from wastewater effluent are highly toxic to both living species and aqueous environments. An environmentally friendly method to remove hazardous dyes from wastewater in the textile industry has been a challenge. Chitosan (CS) and activated carbon (AC) are widely used as adsorbents for dye removal. However, the poor porosity and unsatisfactory stability of CS and the unfriendly cost of AC limited their applications to be used alone as a single adsorbent. Here, we report a novel method to prepare a CS/AC membrane using PEG10000 as a porogen and sodium tripolyphosphate (TPP) as a cross-linking agent. The adsorption efficiency and reusability of the PEG/TPP-modified CS/AC membrane to remove RhB were investigated based on dynamic and static adsorption models. The results reveal that the adsorption performance of CS/AC membranes was significantly improved after the PEG/TPP modification based on the abundance macroporous structure. The modified CS/AC membrane with a 30% AC doping ratio exhibited an excellent adsorption efficiency of 91.29 and 73.91% in the dynamic and static adsorption processes, respectively. These results provide new insights into designing membranes to remove dyes from wastewater efficiently.

13.
PLoS One ; 16(4): e0249990, 2021.
Article in English | MEDLINE | ID: mdl-33914755

ABSTRACT

The Grassland Ecological Compensation Policy (abbreviated as GECP), which aims to realize the ecological protection by reducing the stock-carrying capacity of pastures and promote the transformation of pasture animal husbandry by improving the herders' breeding methods, has been a major project in China's grassland pastoral areas and grassland ecological construction. This study, thus, sought to measure the breeding efficiency of herders before and after the implementation of GECP. Moreover, the study also thought to analyze the effect and the effecting path of the implementation of GECP on the efficiency of herders' livestock breeding. GECP enables herders to obtain financial subsidies while minimizing the utilization of grassland, which brings challenges and opportunities to herders' traditional livestock production. This study used the two-stage data obtained from a randomly selected sample of 449 herders in the Inner Mongolia grassland area of China in 2018. Data envelopment analysis (DEA) and parallel mediating effect (PME) models were used to analyze the data. The results show that the general effect of GECP on the breeding efficiency of herders in the Inner Mongolia is positive (P < 0.01), and the change of breeding methods (direct effect) is the main influence path. Specifically, the grassland circulation behavior (P < 0.01) and the scale of breeding (P < 0.01) are part of the mediating effect. While the mediating effect of the breeding structure is not significant (P > 0.1). This study also shows that the non-agricultural and animal husbandry income of herders has a negative impact on the breeding efficiency (P < 0.01), and herders' age and breeding scale have a positive effect on the breeding efficiency (P<0.01). This study has not only answered the question whether the GECP can improve the efficiency of husbandry, but also focused on the analysis of the impacting mechanism of policies on efficiency. It is of great significance to further improve GECP and the related supporting policies and promote the transformation of China's grassland animal husbandry.


Subject(s)
Environmental Policy , Grassland , Models, Theoretical , Animal Husbandry , Animals , Breeding , China , Livestock/growth & development , Policy
14.
Front Cardiovasc Med ; 8: 808115, 2021.
Article in English | MEDLINE | ID: mdl-35237671

ABSTRACT

Mitochondria is a ubiquitous, energy-supplying (ATP-based) organelle found in nearly all eukaryotes. It acts as a "power plant" by producing ATP through oxidative phosphorylation, providing energy for the cell. The bioenergetic functions of mitochondria are regulated by nuclear genes (nDNA). Mitochondrial DNA (mtDNA) and respiratory enzymes lose normal structure and function when nuclear genes encoding the related mitochondrial factors are impaired, resulting in deficiency in energy production. Massive generation of reactive oxygen species and calcium overload are common causes of mitochondrial diseases. The mitochondrial depletion syndrome (MDS) is associated with the mutations of mitochondrial genes in the nucleus. It is a heterogeneous group of progressive disorders characterized by the low mtDNA copy number. TK2, FBXL4, TYPM, and AGK are genes known to be related to MDS. More recent studies identified new mutation loci associated with this disease. Herein, we first summarize the structure and function of mitochondria, and then discuss the characteristics of various types of MDS and its association with cardiac diseases.

15.
Viruses ; 12(3)2020 03 19.
Article in English | MEDLINE | ID: mdl-32204363

ABSTRACT

Ostrich diseases characterized by paralysis have been breaking out in broad areas of China since 2015, causing major damage to the ostrich breeding industry in China. This report describes a parvovirus detected in ostriches from four different regions. The entire genomes of four parvovirus strains were sequenced following amplification by PCR, and we conducted comprehensive analysis of the ostrich parvovirus genome. Results showed that the length genomes of the parvovirus contained two open reading frames. Ostrich parvovirus (OsPV) is a branch of goose parvovirus (GPV). Genetic distance analysis revealed a close relationship between the parvovirus and goose parvovirus strains from China, with the closest being the 2016 goose parvovirus RC16 strain from Chongqing. This is the first report of a parvovirus in ostriches. However, whether OsPV is the pathogen of ostrich paralysis remains uncertain. This study contributes new information about the evolution and epidemiology of parvovirus in China, which provides a new way for the study of paralysis in ostriches.


Subject(s)
Evolution, Molecular , Genome, Viral , Parvoviridae Infections/virology , Parvovirus/physiology , Struthioniformes/virology , Animals , Base Sequence , Genetic Testing , Genomics/methods , Parvoviridae Infections/diagnosis , Phylogeny , Polymerase Chain Reaction
16.
J Biosci Bioeng ; 127(6): 698-702, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30709705

ABSTRACT

Coenzyme Q10 (CoQ10) plays an important role in the human respiratory chain and is widely used as medicine and dietary supplement. To improve the fermentation efficiency of CoQ10, a modified version of atmospheric and room temperature plasma (ARTP) treatment was used to mutate Rhodobacter sphaeroides. Meanwhile, Vitamin K3, a structural analog of CoQ10, was used as an inhibitor for mutant selection. In the first round of screening in 24-well plates, three mutants were obtained, with the production of CoQ10 at 311 mg/L, 307 mg/L, and 309 mg/L, which were increased from the parent's production at 265 mg/L. Furthermore, a second round of mutation and screening was performed based on the mutant strain with the highest production in the first round, leading to the identification of a mutant AR01 with the production of CoQ10 at ∼330 mg/L. Finally, 590 mg/L CoQ10 was obtained for AR01 after 100 h fermentation, which was ∼25.5% higher than that of the original parent strain. It is the first report of ARTP treatment usage for the selection of CoQ10 producing bacteria and the results show that plasma jet, driven by helium-based ARTP, can be a feasible strategy for mutation feeding.


Subject(s)
Atmosphere , Mutagenesis , Plasma Gases/pharmacology , Rhodobacter sphaeroides/drug effects , Rhodobacter sphaeroides/genetics , Temperature , Ubiquinone/analogs & derivatives , Fermentation/drug effects , Mutation , Rhodobacter sphaeroides/metabolism , Ubiquinone/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...