Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 25(5): 205, 2023 May.
Article in English | MEDLINE | ID: mdl-37090086

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) is an important member of the immunoglobulin family of inflammatory stimulating receptors and is involved in a number of pathophysiological processes. The present study aimed to investigate the role of TREM2 in neurotoxicity induced by high cholesterol levels in SH-SY5Y cells and explore the potential mechanism. SH-SY5Y cells were routinely cultured and stimulated with a range of cholesterol concentrations. Cell viability was assessed using an MTT assay, morphological changes were observed, and the cell cycle distribution was measured using flow cytometry. Lipid deposition was measured by Oil red O staining, and the mRNA and protein expression levels of SRBEP-1 and SRBEP-2 were detected by quantitative PCR and western blotting, respectively. Moreover, the protein expression levels of BDNF, Copine-6, TREM1, TREM2, and key molecules of the Wnt signaling pathways were detected by western blotting. Finally, TREM2 was overexpressed to investigate its potential role in high cholesterol-induced neurotoxicity. The results showed that cell viability was significantly decreased in SH-SY5Y cells stimulated with cholesterol (0.1~100 µM) in a dose- and time-dependent manner. Stimulation with 100 µM cholesterol for 24 h resulted in morphological injuries, increased the proportion of SH-SY5Y cells at G0/G1, the degree of lipid accumulation, and the protein expression levels of sterol regulatory element binding protein (SREBP)1 and SREBP2, markedly decreased the protein expression levels of BDNF, Copine-6, and TREM2, and the p-ß-catenin/ß-catenin ratio, and increased the expression levels of nesfatin-1, TREM1 and the p-GSK3ß/GSK3ß ratio. Furthermore, the imbalanced expression of BDNF, Copine-6, nesfatin-1, and p-GSK3ß induced by high cholesterol levels was reversed after overexpression of TREM2. These results suggest that a high concentration of cholesterol could induce cell injury and lipid deposition in SH-SY5Y cells and that the underlying mechanism may be associated with imbalanced TREM2 expression.

2.
Article in English | MEDLINE | ID: mdl-31338065

ABSTRACT

Resveratrol (RES) is a polyphenolic compound, and our previous results have demonstrated its neuroprotective effect in a series of animal models. The aim of this study was to investigate its potential effect on a nonalcoholic fatty liver disease (NAFLD) rat model. The parameters of liver function and glucose and lipid metabolism were measured. Behavior performance was observed via the open field test (OFT), the sucrose preference test (SPT), the elevated plus maze (EPM), the forced swimming test (FST), and the Morris water maze (MWM). The protein expression levels of Copine 6, p-catenin, catenin, p-glycogen synthase kinase-3beta (GSK3ß), GSK3ß, and cyclin D1 in the hippocampus and prefrontal cortex (PFC) were detected using Western blotting. The results showed that RES could reverse nesfatin-1-related impairment of liver function and glucolipid metabolism, as indicated by the decreased plasma concentrations of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), glucose, insulin, and nesfatin-1; increase the plasma level of high-density lipoprotein cholesterol (HDL-C); and reduce hepatocyte steatosis in NAFLD rats. Although there was no significant difference among groups with regard to performance in the OFT, EPM, and FST tasks, RES-treated NAFLD rats showed an increased sucrose preference index in the SPT and improved learning and memory ability in the MWM task. Furthermore, the imbalanced protein expression levels of Copine 6, p-catenin, and p-GSK3ß in the hippocampus and PFC of NAFLD rats were also restored to normal by treatment with RES. These results suggested that four consecutive weeks of RES treatment not only ameliorated glucolipid metabolic impairment and liver dysfunction in the NAFLD rat model but also mitigated the attendant behavioral and cognitive impairments. In addition to the mediating role of nesfatin-1, the mechanism underlying the therapeutic effect of RES on NAFLD might be associated with its ability to regulate the imbalanced expression level of Copine 6 and the Wnt signaling pathway in the hippocampus and PFC.

3.
Front Neurosci ; 12: 731, 2018.
Article in English | MEDLINE | ID: mdl-30429764

ABSTRACT

Chronic stress is a contributing risk factor in the pathogenesis of depression. Although the mechanisms are multifaceted, the relationship can be ascribed partly to stress-related alterations in immune activation and brain plasticity. Considering the increasing evidence regarding the role of Copine 6 in the regulation of synaptic plasticity, the aim of the present study is to investigate Copine 6 expression in the hippocampus and the prefrontal cortex (PFC) in a stress-induced depression rat model. The behavior of the rats was evaluated via the open field test, saccharin preference test, elevated plus maze test, tail suspension test, Morris water maze, and forced swimming test. The plasma concentrations of C-reactive protein (CRP) and interleukin-6 (IL-6) were measured, and the protein expressions of brain-derived neurotrophic factor (BDNF), Copine 6, and synaptic plasticity markers in the hippocampus and the PFC were also detected. The results showed that chronic unpredictable mild stress (CUMS) induces depression-like behavior in rats, accompanied by increased plasma concentrations of CRP and IL-6. Moreover, the protein expressions of BDNF, Copine 6, and synapsin I were decreased in both the hippocampus and the PFC of CUMS rats, and the protein expression of synaptotagmin I was decreased in the hippocampus. Furthermore, Pearson's test revealed a potential relationship between the depression-like behavior, the plasma CRP concentration, and the protein expressions of BDNF, Copine 6, synapsin I, or synaptotagmin I in the hippocampus or the PFC. Together with our previous results, the current findings suggest that apart from immune activation, the BDNF-related imbalance of Copine 6 expression in the brain might play a crucial role in stress-associated depression-like behaviors and synaptic plasticity changes.

SELECTION OF CITATIONS
SEARCH DETAIL
...