Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38381638

ABSTRACT

The emergence of the novel coronavirus, designated as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has posed a significant threat to public health worldwide. There has been progress in reducing hospitalizations and deaths due to SARS-CoV-2. However, challenges stem from the emergence of SARS-CoV-2 variants, which exhibit high transmission rates, increased disease severity, and the ability to evade humoral immunity. Epitope-specific T-cell receptor (TCR) recognition is key in determining the T-cell immunogenicity for SARS-CoV-2 epitopes. Although several data-driven methods for predicting epitope-specific TCR recognition have been proposed, they remain challenging due to the enormous diversity of TCRs and the lack of available training data. Self-supervised transfer learning has recently been proven useful for extracting information from unlabeled protein sequences, increasing the predictive performance of fine-tuned models, and using a relatively small amount of training data. This study presents a deep-learning model generated by fine-tuning pre-trained protein embeddings from a large corpus of protein sequences. The fine-tuned model showed markedly high predictive performance and outperformed the recent Gaussian process-based prediction model. The output attentions captured by the deep-learning model suggested critical amino acid positions in the SARS-CoV-2 epitope-specific TCRß sequences that are highly associated with the viral escape of T-cell immune response.


Subject(s)
COVID-19 , Computational Biology , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell , SARS-CoV-2 , SARS-CoV-2/immunology , Humans , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/genetics , COVID-19/immunology , COVID-19/virology , Computational Biology/methods
2.
BMC Bioinformatics ; 18(1): 585, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29281985

ABSTRACT

BACKGROUND: Computational scanning of peptide candidates that bind to a specific major histocompatibility complex (MHC) can speed up the peptide-based vaccine development process and therefore various methods are being actively developed. Recently, machine-learning-based methods have generated successful results by training large amounts of experimental data. However, many machine learning-based methods are generally less sensitive in recognizing locally-clustered interactions, which can synergistically stabilize peptide binding. Deep convolutional neural network (DCNN) is a deep learning method inspired by visual recognition process of animal brain and it is known to be able to capture meaningful local patterns from 2D images. Once the peptide-MHC interactions can be encoded into image-like array(ILA) data, DCNN can be employed to build a predictive model for peptide-MHC binding prediction. In this study, we demonstrated that DCNN is able to not only reliably predict peptide-MHC binding, but also sensitively detect locally-clustered interactions. RESULTS: Nonapeptide-HLA-A and -B binding data were encoded into ILA data. A DCNN, as a pan-specific prediction model, was trained on the ILA data. The DCNN showed higher performance than other prediction tools for the latest benchmark datasets, which consist of 43 datasets for 15 HLA-A alleles and 25 datasets for 10 HLA-B alleles. In particular, the DCNN outperformed other tools for alleles belonging to the HLA-A3 supertype. The F1 scores of the DCNN were 0.86, 0.94, and 0.67 for HLA-A*31:01, HLA-A*03:01, and HLA-A*68:01 alleles, respectively, which were significantly higher than those of other tools. We found that the DCNN was able to recognize locally-clustered interactions that could synergistically stabilize peptide binding. We developed ConvMHC, a web server to provide user-friendly web interfaces for peptide-MHC class I binding predictions using the DCNN. ConvMHC web server can be accessible via http://jumong.kaist.ac.kr:8080/convmhc . CONCLUSIONS: We developed a novel method for peptide-HLA-I binding predictions using DCNN trained on ILA data that encode peptide binding data and demonstrated the reliable performance of the DCNN in nonapeptide binding predictions through the independent evaluation on the latest IEDB benchmark datasets. Our approaches can be applied to characterize locally-clustered patterns in molecular interactions, such as protein/DNA, protein/RNA, and drug/protein interactions.


Subject(s)
Deep Learning , Histocompatibility Antigens Class I/metabolism , Peptides/metabolism , Alleles , Amino Acid Sequence , Animals , Histocompatibility Antigens Class I/immunology , Humans , Internet , Machine Learning , Peptides/chemistry , Protein Binding , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...