Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Phytother Res ; 34(5): 1166-1174, 2020 May.
Article in English | MEDLINE | ID: mdl-31833107

ABSTRACT

Berberine (BBR), a small alkaloid, is used as a hypoglycemic agent in China. Stachyose (Sta), a Rehmannia glutinosa oligosaccharide, acts as a prebiotic. This study aimed to evaluate whether BBR combined with Sta produced better glycometabolism than BBR alone, and explored the effects on gut microbiota and metabolomics. Type-2 diabetic db/db mice were administered BBR (100 mg/kg), Sta (200 mg/kg), or both by gavage once daily. Glucose metabolism, the balance of α- and ß-cells, and mucin-2 expression were ameliorated by combined treatment of BBR and Sta, with stronger effects than upon treatment with BBR alone. The microbial diversity and richness were altered after combined treatment and after treatment with BBR alone. The abundance of Akkermansia muciniphila was increased by combined treatment compared to treatment with BBR alone, while the levels of the metabolite all-trans-heptaprenyl diphosphate were decreased and the levels of fumaric acid were increased, which both showed a strong correlation with A. muciniphila. In summary, BBR combined with Sta produced better glycometabolism than BBR alone through modulating gut microbiota and fecal metabolomics, and may aid in the development of a novel pharmaceutical strategy for treating Type 2 diabetes mellitus.


Subject(s)
Berberine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Feces/chemistry , Gastrointestinal Microbiome/drug effects , Metabolomics/methods , Oligosaccharides/therapeutic use , Animals , Berberine/pharmacology , Male , Mice , Oligosaccharides/pharmacology
3.
Eur J Pharmacol ; 839: 12-20, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30240794

ABSTRACT

Vasogenic brain edema after subarachnoid hemorrhage (SAH) is an independent risk factor for death and poor prognosis. Disruption of the blood-brain barrier (BBB) is the main cause of vasogenic brain edema induced by SAH. Oleanolic acid (OA) is a natural pentacyclic triterpenoid with various biological functions. Previous studies have shown that prophylactic administration of OA could prevent the BBB disruption in autoimmune encephalomyelitis mice. In this context, we speculate that OA may play a neuroprotective role by protecting the integrity of the BBB and reducing vasogenic cerebral edema after SAH. To validate this hypothesis, a SAH model was established on Sprague Dawley rats using a standard intravascular puncture model. The effects of OA on various physiological indexes were observed, including SAH grades, mortality, neurological function score, brain edema and BBB permeability. Related proteins of the brain endothelial cell junction complex were also detected, including tight junctions (TJs) and adherent junctions (AJs). Results showed that OA significantly reduced the permeability of BBB and relieved brain edema by increasing protein expression of TJs and AJs, and decreased the SAH grades by increasing the protein expression of heme oxygenase-1 (HO-1) in SAH rats. Additionally, we found OA could inhibit up-regulation of VEGF and the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and suppress p38MAPK/VEGF/Src signaling pathway which involved in BBB disruption following SAH. From the experimental results, we speculate that OA effectively alleviated SAH-induced vasogenic edema by targeting p38 MAPK/VEGF/Src axis.


Subject(s)
Blood-Brain Barrier/drug effects , MAP Kinase Signaling System/drug effects , Oleanolic Acid/pharmacology , Subarachnoid Hemorrhage/metabolism , Vascular Endothelial Growth Factor A/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism , Animals , Blood-Brain Barrier/metabolism , Body Weight/drug effects , Disease Models, Animal , Gene Expression Regulation/drug effects , Heme Oxygenase-1/metabolism , Male , Microglia/drug effects , Microglia/pathology , Permeability/drug effects , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/pathology
4.
Mitochondrial DNA B Resour ; 3(1): 125-126, 2018 Jan 11.
Article in English | MEDLINE | ID: mdl-33474090

ABSTRACT

Prunella vulgaris L. is an important medicinal herb widely used in China and western countries. Its natural distribution occurs in various habitats throughout northern hemisphere. In present study, we assembled and characterized its whole chloroplast (cp) genome based on Illumina pair-end sequencing data. The complete chloroplast genome size is 156,132 bp. It contained 134 genes, including 89 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. 8 gene species had two copies. The overall GC content of this genome was 37.9%. A further phylogenomic analysis of Lamiaceae, including 29 taxa, was conducted for the placement of P. vulgaris.

5.
Appl Plant Sci ; 5(4)2017 Apr.
Article in English | MEDLINE | ID: mdl-28439478

ABSTRACT

PREMISE OF THE STUDY: Although several microsatellite markers of Smilax aspera (Smilacaceae) have been reported in a previous study, due to universality issues in cross-population amplification, we have newly developed microsatellite markers for S. aspera based on transcriptome data to further investigate gene flow and genetic structure of its circum-Mediterranean, East African, and South Asian populations. METHODS AND RESULTS: A total of 4854 simple sequence repeat (SSR) primer pairs were designed from 99,193 contigs acquired from public transcriptome data of S. bona-nox. Forty-six microsatellite loci were selected for further genotyping in 12 S. aspera populations. The number of alleles varied from three to 28, and 93.5% of the developed microsatellite markers could be cross-amplified in least one of three congeneric Smilax species. CONCLUSIONS: The SSR markers developed in this study will facilitate further studies on genetic diversity and phylogeographic patterns of S. aspera in intercontinental geographical scales.

6.
Front Plant Sci ; 7: 1707, 2016.
Article in English | MEDLINE | ID: mdl-27899929

ABSTRACT

Aceraceae is a large forest tree family that comprises many economically and ecologically important species. However, because interspecific and/or intraspecific morphological variations result from frequent interspecific hybridization and introgression, it is challenging for non-taxonomists to accurately recognize and identify the tree species in Aceraceae based on a traditional approach. DNA barcoding is a powerful tool that has been proposed to accurately distinguish between species. In this study, we assessed the effectiveness of three core standard markers (matK, rbcL and ITS) plus the chloroplast locus trnS-trnG as Aceraceae barcodes. A total of 231 sequences representing 85 species in this forest family were collected. Of these four barcode markers, the discrimination power was highest for the ITS (I) region (50%) and was progressively reduced in the other three chloroplast barcodes matK (M), trnS-trnG (T) and rbcL (R); the discrimination efficiency of the ITS marker was also greater than any two-locus combination of chloroplast barcodes. However, the combinations of ITS plus single or combined chloroplast barcodes could improve species resolution significantly; T+I (90.5% resolution) and R+M+T+I (90.5% resolution) differentiated the highest portion of species in Aceraceae. Our current results show that the nuclear ITS fragment represents a more promising DNA barcode marker than the maternally inherited chloroplast barcodes. The most efficient and economical method to identify tree species in Aceraceae among single or combined DNA barcodes is the combination of T+I (90.5% resolution).

7.
Chin J Nat Med ; 13(8): 578-87, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26253490

ABSTRACT

Diosgenin, a well-known steroid sapogenin derived from plants, has been used as a starting material for production of steroidal hormones. The present review will summarize published literature concerning pharmacological potential of diosgenin, and the underlying mechanisms of actions. Diosgenin has shown a vast range of pharmacological activities in preclinical studies. It exhibits anticancer, cardiovascular protective, anti-diabetes, neuroprotective, immunomodulatory, estrogenic, and skin protective effects, mainly by inducing apoptosis, suppressing malignant transformation, decreasing oxidative stress, preventing inflammatory events, promoting cellular differentiation/proliferation, and regulating T-cell immune response, etc. It interferes with cell death pathways and their regulators to induce apoptosis. Diosgenin antagonizes tumor metastasis by modulating epithelial-mesenchymal transition and actin cytoskeleton to change cellular motility, suppressing degradation of matrix barrier, and inhibiting angiogenesis. Additionally, diosgenin improves antioxidant status and inhibits lipid peroxidation. Its anti-inflammatory activity is through inhibiting production of pro-inflammatory cytokines, enzymes and adhesion molecules. Furthermore, diosgenin drives cellular growth/differentiation through the estrogen receptor (ER) cascade and transcriptional factor PPARγ. In summary, these mechanistic studies provide a basis for further development of this compound for pharmacotherapy of various diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antioxidants/pharmacology , Diosgenin/pharmacology , Phytoestrogens/pharmacology , Plant Extracts/pharmacology , Animals , Cell Proliferation/drug effects , Humans , Inflammation Mediators/metabolism , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...