Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
2.
Asian J Androl ; 24(5): 540-548, 2022.
Article in English | MEDLINE | ID: mdl-35142655

ABSTRACT

The limited treatment options for advanced prostate cancer (PCa) lead to the urgent need to discover new anticancer drugs. Mannose, an isomer of glucose, has been reported to have an anticancer effect on various tumors. However, the anticancer effect of mannose in PCa remains unclear. In this study, we demonstrated that mannose inhibits the proliferation and promotes the apoptosis of PCa cells in vitro, and mannose was observed to have an anticancer effect in mice without harming their health. Accumulation of intracellular mannose simultaneously decreased the mitochondrial membrane potential, increased mitochondrial and cellular reactive oxygen species (ROS) levels, and reduced adenosine triphosphate (ATP) production in PCa cells. Mannose treatment of PCa cells induced changes in mitochondrial morphology, caused dysregulated expression of the fission protein, such as fission, mitochondrial 1 (FIS1), and enhanced the expression of proapoptotic factors, such as BCL2-associated X (Bax) and BCL2-antagonist/killer 1 (Bak). Furthermore, lower expression of mannose phosphate isomerase (MPI), the key enzyme in mannose metabolism, indicated poorer prognosis in PCa patients, and downregulation of MPI expression in PCa cells enhanced the anticancer effect of mannose. This study reveals the anticancer effect of mannose in PCa and its clinical significance in PCa patients.


Subject(s)
Mannose , Prostatic Neoplasms , Animals , Apoptosis , Cell Line, Tumor , Humans , Male , Membrane Potential, Mitochondrial , Mice , Mitochondria , Reactive Oxygen Species
3.
Cancer Sci ; 112(10): 4365-4376, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34252262

ABSTRACT

A substantial proportion of prostatic adenocarcinoma (PRAD) patients experience biochemical failure (BCF) after radical prostatectomy (RP). The immune microenvironment plays a vital role in carcinogenesis and the development of PRAD. This study aimed to identify a novel immune-related gene (IRG)-based signature for risk stratification and prognosis of BCF in PRAD. Weighted gene coexpression network analysis was carried out to identify a BCF-related module in a discovery cohort of patients who underwent RP at the Massachusetts General Hospital. The median follow-up time was 70.32 months. Random forest and multivariate stepwise Cox regression analyses were used to identify an IRG-based signature from the specific module. Risk plot analyses, Kaplan-Meier curves, receiver operating characteristic curves, univariate and multivariate Cox regression analyses, stratified analysis, and Harrell's concordance index were used to assess the prognostic value and predictive accuracy of the IRG-based signature in the internal discovery cohort; The Cancer Genome Atlas database was used as a validation cohort. Tumor immune estimation resource database analysis and CIBERSORT algorithm were used to assess the immunophenotype of PRAD. A novel IRG-based signature was identified from the specific module. Five IRGs (BUB1B, NDN, NID1, COL4A6, and FLRT2) were verified as components of the risk signature. The IRG-based signature showed good prognostic value and predictive accuracy in both the discovery and validation cohorts. Infiltrations of various immune cells were significantly different between low-risk and high-risk groups in PRAD. We identified a novel IRG-based signature that could function as an index for assessing tumor immune status and risk stratification in PRAD.


Subject(s)
Adenocarcinoma/genetics , Gene Regulatory Networks , HLA Antigens/genetics , Prostatic Neoplasms/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Cell Cycle Proteins/genetics , Cohort Studies , Collagen Type IV/genetics , Follow-Up Studies , Gene Expression Profiling , Genetic Markers , Humans , Immunity, Cellular , Immunophenotyping , Kaplan-Meier Estimate , Male , Membrane Glycoproteins/genetics , Middle Aged , Neoplasm Grading , Neoplasm Staging , Predictive Value of Tests , Prognosis , Prostate-Specific Antigen/blood , Prostatectomy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Protein Serine-Threonine Kinases/genetics , ROC Curve , Regression Analysis , Risk Assessment , Treatment Failure , Tumor Microenvironment/immunology , Tumor Suppressor Proteins/genetics
4.
Mol Med Rep ; 22(5): 3777-3784, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32901864

ABSTRACT

The aim of the present study was to use the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR­associated (Cas) 9­mediated gene knockout technology for the rapid classification of the differential function of micro (mi)RNAs screened using miRNA expression profiling by microarray. The rational design of single guide RNAs for the CRISPR/Cas9 system was verified to function in human LNCaP cells with rapid and efficient target gene editing. miRNA (miR)­205, miR­221, miR­222, miR­30c, miR­224, miR­455­3p, miR­23b and miR­505 were downregulated in patients with prostate cancer (PCa) and were experimentally validated to function as tumor suppressors in prostate cancer cells, affecting tumor proliferation, invasion and aerobic glycolysis. In addition, the data of the present study suggested that miR­663a and mfiR­1225­5p were upregulated in prostate cancer tissues and cell proliferation of miR­663a and miR­1225­5p knockout PCa cells was significantly lower compared with miR­NC cells. Furthermore, knockout of miR­1225­5p and miR­663a significantly decreased the lactate production in LNCaP cells in vitro. In conclusion, the present study offered a simple and efficient method for rapidly classifying miRNA function by applying CRISPR/Cas9 in LNCaP cells. The present study suggested, for the first time to the best of the authors' knowledge, that the aberrant expression of miR­663a and miR­1225­5p may be involved with the progression of prostate cancer, implying their potential as candidate markers for this type of cancer. However, the precise role of miR­663a and miR­1225­5p in accelerating the development of prostate cancer and promoting tumor progression remains to be elucidated.


Subject(s)
Gene Knockout Techniques/methods , MicroRNAs/genetics , Prostatic Neoplasms/genetics , CRISPR-Cas Systems , Cell Line, Tumor , Cell Movement , Cell Proliferation , Disease Progression , Gene Expression Regulation, Neoplastic , Glycolysis , Humans , Male
5.
Mol Carcinog ; 59(8): 897-907, 2020 08.
Article in English | MEDLINE | ID: mdl-32319143

ABSTRACT

Lactate dehydrogenase isozyme (LDH) is a tetramer constituted of two isoforms, LDHA and LDHB, the expression of which is associated with cell metabolism and cancer progression. Our previous study reveals that CC-chemokine ligand-18 (CCL18) is involved in progression of prostate cancer (PCa).This study aims to investigate how CCL18 regulates LDH isoform expression, and therefore, contributes to PCa progression. The data revealed that the expression of LDHA was upregulated and LDHB was downregulated in PCa cells by CCL18 at both messenger RNA and protein levels. The depletion of CCR8 reduced the ability of CCL18 to promote the proliferation, migration, and lactate production of PCa cells. Depletion of a CCR8 regulated transcription factor, ARNT, significantly reduced the expression of LDHA. In addition, The Cancer Genome Atlas dataset analyses revealed a positive correlation between CCR8 and ARNT expression. Two dimension difference gel electrophoresis revealed that the LDHA/LDHB ratio was increased in the prostatic fluid of patients with PCa and PCa tissues. Furthermore, increased LDHA/LDHB ratio was associated with poor clinical outcomes of patients with PCa. Together, our results indicate that the CCR8 pathway programs LDH isoform expression in an ARNT dependent manner and that the ratio of LDHA/LDHB has the potential to serve as biomarkers for PCa diagnosis and prognosis.


Subject(s)
Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Biomarkers, Tumor/metabolism , Chemokines, CC/metabolism , Gene Expression Regulation, Neoplastic , L-Lactate Dehydrogenase/metabolism , Prostatic Neoplasms/pathology , Receptors, CCR8/metabolism , Apoptosis , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Biomarkers, Tumor/genetics , Cell Proliferation , Chemokines, CC/genetics , Humans , Isoenzymes , L-Lactate Dehydrogenase/genetics , Male , Prognosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, CCR8/genetics , Survival Rate , Tumor Cells, Cultured
6.
Oncol Lett ; 18(6): 6697-6703, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31814851

ABSTRACT

Abnormal expression of Holliday junction recognition protein (HJURP) in several types of tumor cells plays a vital role in the formation and progression of tumors. Few studies have investigated the role of HJURP in prostate cancer (PCa). The aim of this study was to analyze the expression levels of HJURP in PCa and to establish the association with clinicopathological data. Reverse transcription quantitative polymerase chain reaction and immunohistochemical analysis were used to detect the expression levels of HJURP in benign and PCa prostate tissues. The Taylor dataset was statistically analyzed to determine if HJURP expression levels were associated with PCa clinicopathological data. HJURP was overexpressed in PCa tissues compared with benign prostate tissues. Statistical analysis of the Taylor dataset indicated that upregulation of HJURP was significantly associated with positive prostate-specific antigen (PSA) levels (P=0.004), high Gleason score (P=0.005), advanced pathological stage (P=0.007), metastasis (P<0.001) and PSA failure (P<0.001). Higher HJURP mRNA expression levels were significantly associated with shorter biochemical recurrence (BCR)-free survival (P<0.001). To the best of our knowledge, this study is the first report of HJURP upregulation in PCa tissues. Upregulation of HJURP may predict BCR-free survival and HJURP may be an oncogene that impacts the prognosis of patients with PCa.

8.
Cell Signal ; 59: 152-162, 2019 07.
Article in English | MEDLINE | ID: mdl-30926388

ABSTRACT

Immunotherapy has made great breakthroughs in the field of cancer. However, the immunotherapeutic effect of prostate cancer is unsatisfactory. We found that the expression of TRIB1 was significantly correlated with the infiltration of CD163+ macrophages in prostate cancer. This study focused on the effects of TRIB1 on macrophage polarization in the immune microenvironment of prostate cancer. RNA sequencing analysis demonstrated that TRIB1 has significant effects on the regulation of the nuclear factor (NF)-κB signaling pathway and downstream cytokines. Flow cytometry and enzyme-linked immunosorbent assay were used to examine THP-1 cells cultured in conditioned medium from prostate cancer cells overexpressing TRIB1 and showed that overexpression of TRIB1 promoted the secretion of CXCL2 and interleukin (IL)8 by PC3 cells, which increased the secretion of IL12 by THP-1 cells as well as the expression of CD163 on THP-1 cells. IKB-zeta, regulated by TRIB1, was expressed in PC3 cells but was barely detectable in DU145 cells. The reductions in CXCL2 and IL8 by the inhibition of TRIB1 were rescued by the deletion of IKB-zeta. Here we showed that TRIB1 promoted the secretion of cytokines from prostate cancer cells and induced the differentiation of monocytes/macrophages into M2 macrophages.


Subject(s)
Intracellular Signaling Peptides and Proteins/physiology , Macrophages/immunology , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Tumor Microenvironment/immunology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Chemokine CXCL2/immunology , Humans , Macrophage Activation , Macrophages/cytology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , NF-kappa B/immunology , PC-3 Cells , Protein Serine-Threonine Kinases/physiology , Receptors, Cell Surface/metabolism , THP-1 Cells
9.
Int J Cancer ; 144(12): 3099-3110, 2019 06 15.
Article in English | MEDLINE | ID: mdl-30537104

ABSTRACT

To investigate immune profile consisting of stromal PD-L1 expression, inhibitory or non-T-cell inflamed tumor microenvironment that may predict response to anti-PD-L1/PD-1 immunotherapy in prostate cancer, we validated the specificity of a PD-L1 monoclonal antibody (E1L3N) and identified PD-L1 specific expression in prostatic stromal nerve cells. PD-L1 expression was analyzed in 73 primary prostate cancers and 7 castration-resistant prostate cancers (CRPC) by immunohistochemistry (IHC) and resulting data from primary prostate cancers were correlated with tumor-associated lymphocytes (TALs), clinicopathological characteristics and clinical outcome. PD-L1 was expressed in the tumor cells in only one primary prostate cancer case and none of the CRPC. However, PD-L1 was frequently observed in the nerve branches in the tumor-associated stroma (69 of 73 cases, 94.5%), supported by colocalization with axonal marker PGP9.5. FoxP3-, CD3- and CD8-positive T lymphocytes were observed in 74.6% (47/63), 98.4% (62/63) and 100% (61/61) of the cases, respectively. The density of PD-L1+ tumor-associated nerves (TANs) was inversely correlated with that of CD8+ TALs. Higher density of PD-L1+ TANs was significantly associated with biochemical recurrence (BCR) in Kaplan-Meier survival analysis (p = 0.016). In both univariate and multivariate Cox analysis, the density of PD-L1+ TANs was independently prognostic of BCR. In conclusion, PD-L1 expression is rare in prostate tumor cells but prevalent in TANs and negatively correlated with CD8+ TALs. Neuro-immunological interaction may be a contribution to immune-suppressive microenvironment. Combinatorial treatment regimen designs to neural PD-L1 and TALs should be warranted in future clinical application of anti-PD-L1/PD-1 immunotherapy in prostate cancer.


Subject(s)
B7-H1 Antigen/biosynthesis , CD8-Positive T-Lymphocytes/immunology , Prostate/innervation , Prostatic Neoplasms, Castration-Resistant/immunology , Prostatic Neoplasms/immunology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/pathology , Humans , Immunohistochemistry , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/surgery , Tumor Microenvironment/immunology , Ubiquitin Thiolesterase
10.
Oncol Lett ; 16(3): 2823-2832, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30127868

ABSTRACT

Targeting protein for Xenopus kinesin-like protein 2 (TPX2) activates Aurora kinase A during mitosis and targets its activity to the mitotic spindle, serving an important role in mitosis. It has been associated with different types of cancer and is considered to promote tumor growth. The aim of the present study was to explore the role of TPX2 in diagnosing prostate cancer (PCa). It was identified that TPX2 expression in PCa tissues was increased compared with benign prostate tissues. Microarray analysis demonstrated that TPX2 was positively associated with the Gleason score, tumor-node-metastasis (TNM) stage, clinicopathological stage, metastasis, overall survival and biochemical relapse-free survival. In vitro studies revealed that the high expression of TPX2 in PCa cells improved proliferative, invasive and migratory abilities, and repressed apoptosis of the PCa cells, without affecting tolerance to docetaxel. The results suggested that TPX2 serves as a tumorigenesis-promoting gene in PCa, and a potential therapeutic target for patients with PCa.

11.
J Cell Biochem ; 119(9): 7245-7255, 2018 09.
Article in English | MEDLINE | ID: mdl-29797600

ABSTRACT

AT-rich interaction domain 4A (ARID4A) and AT-rich interaction domain 4B (ARID4B), which are both the AT-rich interaction domain (ARID) family, have been reported to be oncogene or tumor suppressor gene in various human malignances, but there is no involvement about their functions in prostate cancer (PCa). Our previous study has reported that microRNA-30d (miR-30d) expression can predicted poor clinical prognosis in PCa, however, the underlying mechanisms of miR-30d have not been fully described. The aim of our study is to investigate the expression relevance between miR-30d and ARID4A or ARID4B, and examine the clinical significance and biological function of ARID4A and AIRD4B in PCa. In this study, both ARID4A and ARID4B were identified as the target genes of miR-30d. In addition, the mRNA expression of miR-30d in PCa tissues were significantly negative correlated with ARID4A (Pearson correlation coefficient = -0.313, P = 0.001) and ARID4B (Pearson correlation coefficient = -0.349, P < 0.001), while there was a positive correlation between ARID4A and ARID4B (Pearson correlation coefficient = 0.865, P < 0.001). Moreover, both ARID4A and ARID4B were significantly downregulated in PCa tissues with high Gleason scores (P = 0.005, P = 0.033), PSA failure (P = 0.012, P = 0.05) and short biochemical recurrent-free survival (P = 0.033, P = 0.031). Furthermore, the knockout expression of ARID4A and ARID4B promoted PCa cell proliferation, migration and invasion in vitro. In conclusion, our results indicated that ARID4A and ARID4B may serve as tumor suppressor in PCa progression, suggesting that they might be the potential therapeutic targets in prostate cancer.


Subject(s)
Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Retinoblastoma-Binding Protein 1/genetics , Retinoblastoma-Binding Protein 1/metabolism , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cohort Studies , Disease Progression , Down-Regulation , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Genes, Tumor Suppressor , Humans , Kaplan-Meier Estimate , Male , Neoplasm Invasiveness , Statistics, Nonparametric
12.
Oncotarget ; 8(46): 80295-80302, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29113303

ABSTRACT

Benign prostatic hyperplasia (BPH) is one of the most common diseases in the senior men and age plays an important role in the initiation and development of BPH. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles such as mitochondria and suppress pyroptosis, a type of cell death that stimulates inflammatory responses and growth of other cells around. Peroxiredoxin 3 (PRDX3) is the only mitochondrion-associated member of peroxiredoxin family enzymes that exert their protective antioxidant role in cells through their peroxidase activity. We hypothesized that PRDX3 may inhibit autophagy to activate pyroptosis to induce growth of prostatic epithelial cells. Here we show that PRDX3 maintained the integrity of mitochondria and its depletion led to an enhancement of oxidative stresses. PRDX3-associated and PRDX3-free mitochondria co-existed in the same cells. PRDX3 expressed at higher levels in prostatic epithelial cells in prostate tissues from BPH patients and BPH-representative cell line than in prostate tissues from healthy donors and a cell line representing normal epithelial cells. PRDX3 suppressed autophagy flux and activated pyroptosis to induce inflammatory responses and stimulate the over-growth of prostate tissues. Therefore, higher levels of PDRX3 in prostatic epithelial cells may promote the initiation and development of BPH through autophagy inhibition and pyroptosis activation.

13.
Tumour Biol ; 39(6): 1010428317703924, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28651494

ABSTRACT

As a member of helix-loop-helix protein family, transcription factor 12 functions as either an oncogene or a tumor suppressor in various human cancers. However, there are no reports on its involvement in prostate cancer. To investigate clinical relevance of transcription factor 12 in prostate cancer and to evaluate its roles in malignant phenotypes of this cancer in vitro and in vivo, we here examined expression patterns of transcription factor 12 protein in 50 prostate cancer tissue specimens by immunohistochemistry. Then, associations of transcription factor 12 expression with various clinicopathological characteristics and patients' prognosis of prostate cancer were evaluated. Its involvements in cancer cell proliferation, migration, invasion, and tumor growth were determined by in vitro and in vivo experiments. As a result, the positive immunostaining of transcription factor 12 protein was localized in cytoplasm and/or nucleus of prostate cancer cells. Its expression levels were decreased with prostate cancer Gleason score increased. Statistically, the decreased expression of transcription factor 12 protein more frequently occurred in prostate cancer patients with high Gleason score, positive metastasis, prostate-specific antigen failure, and short biochemical recurrence-free survival (all p < 0.05). Importantly, multivariate analysis showed that the status of transcription factor 12 expression was an independent predictor of biochemical recurrence-free survival in prostate cancer. Functionally, enforced expression of transcription factor 12 suppressed cell proliferation, migration, and invasion in vitro and inhibited tumor growth in vivo. In conclusion, transcription factor 12 protein may be a novel molecule which plays a critical role in prostate cancer progression and patients' prognosis, suggesting it might be a promising therapeutic target for prostate cancer therapy.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Biomarkers, Tumor/genetics , Neoplasm Recurrence, Local/genetics , Prostatic Neoplasms/genetics , Aged , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Biomarkers, Tumor/biosynthesis , Cell Proliferation/genetics , Disease Progression , Disease-Free Survival , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology
14.
Mol Cancer ; 16(1): 48, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28241827

ABSTRACT

BACKGROUND: Even though aberrant expression of microRNA (miR)-30d has been reported in prostate cancer (PCa), its associations with cancer progression remain contradictory. The aim of this study was to investigate clinical significance, biological functions and underlying mechanisms of miR-30d deregulation in PCa. METHODS: Involvement of miR-30d deregulation in malignant phenotypes of PCa was demonstrated by clinical sample evaluation, and in vitro and in vivo experiments. The mechanisms underlying its regulatory effect on tumor angiogenesis were determined. RESULTS: miR-30d over-expression was observed in both PCa cells and clinical specimens. High-miR-30d was distinctly associated with high pre-operative PSA and Gleason score, advanced clinical and pathological stages, positive metastasis and biochemical recurrence (BCR), and reduced overall survival of PCa patients. Through gain- and loss-of-function experiments, we found that miR-30d promoted PCa cell proliferation, migration, invasion, and capillary tube formation of endothelial cells, as well as in vivo tumor growth and angiogenesis in a mouse model. Simulation of myosin phosphatase targeting subunit 1 (MYPT1), acting as a direct target of miR-30d, antagonized the effects induced by miR-30d up-regulation in PCa cells. Notably, miR-30d/MYPT1 combination was identified as an independent factor to predict BCR of PCa patients. Furthermore, miR-30d exerted its pro-angiogenesis function, at least in part, by inhibiting MYPT1, which in turn, increased phosphorylation levels of c-JUN and activated VEGFA-induced signaling cascade in endothelial cells. CONCLUSIONS: miR-30d and/or its target gene MYPT1 may serve as novel prognostic markers of PCa. miR-30d promotes tumor angiogenesis of PCa through MYPT1/c-JUN/VEGFA pathway.


Subject(s)
MicroRNAs/genetics , Myosin-Light-Chain Phosphatase/metabolism , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-jun/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Animals , Biomarkers, Tumor , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Gene Expression Regulation , Heterografts , Humans , Male , Mice , Myosin-Light-Chain Phosphatase/genetics , Prognosis , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , RNA Interference
15.
Onco Targets Ther ; 9: 2211-20, 2016.
Article in English | MEDLINE | ID: mdl-27143916

ABSTRACT

BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is a member of the spindle assembly checkpoint protein family, which has been proven to be associated with many kinds of cancers. The aim of this study was to investigate whether BUB1B was correlated with progression and prognosis in patients with prostate cancer (PCa) and how BUB1B regulated the proliferation, migration, and invasion of PCa cell lines. Compared to benign prostate cells and tissues, both messenger RNA and protein expressions of BUB1B were statistically increased in PCa cell lines and tumor tissues. In vitro studies revealed that BUB1B overexpression enhanced the proliferation, migration, and invasion ability of PCa cell lines, whereas depletion of BUB1B did not affect the cell functions. Microarray analysis showed the positive staining of BUB1B was upregulated in the higher Gleason score group, which also correlated with advanced clinicopathological stage, higher serum prostate-specific antigen, metastasis, overall survival, and prostate-specific antigen failure. Furthermore, the survival analysis indicated that high expression of BUB1B was an independent predictor for shorter biochemical recurrence-free survival, which had no effect on overall survival. BUB1B plays an important role in tumor growth and progression, which can lead to its use as a potential biomarker for the diagnosis and prognosis of PCa.

16.
Biomed Pharmacother ; 78: 116-120, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26898432

ABSTRACT

BACKGROUND: Protein regulator of cytokinesis 1 (PRC1) has been reported to be implicated into the completion of cytokinesis and is dys-regulated in a cancer-specific manner. However, it roles in human prostate cancer (PCa) remain unclear. In the current study, we aimed to investigate the expression pattern of PRC1 and its clinical significance in this malignancy. MATERIALS AND METHODS: PRC1 protein expression in human PCa and non-cancerous prostate tissues was detected by immunohistochemistry, which was validated by microarray-based Taylor data at mRNA level. Then, the associations of PRC1 expression with clinicopathological features and clinical outcome of PCa patients were statistically analyzed. RESULTS: PRC1 expression in PCa tissues, at both mRNA and protein levels, were significantly higher than those in non-cancerous prostate tissues. In addition, the PCa patients with PRC1 overexpression more frequently had high Gleason score, advanced pathological stage, positive metastasis, short overall survival time and positive PSA failure than those with low Gleason score, early pathological stage, negative metastasis, long overall survival time and negative PSA failure (all P<0.05). Moreover, PRC1 expression was identified as an unfavorable prognostic factor of biochemical recurrence-free survival in PCa patients (P<0.001). CONCLUSION: These findings suggest that the aberrant expression of PRC1 may predict biochemical recurrence in men with PCa highlighting its potential as a prognostic marker of this malignancy.


Subject(s)
Cell Cycle Proteins/genetics , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aged , Cell Cycle Proteins/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Multivariate Analysis , Neoplasm Invasiveness
17.
BMC Urol ; 15: 90, 2015 Aug 29.
Article in English | MEDLINE | ID: mdl-26320076

ABSTRACT

BACKGROUND: The NIMA-related kinase 2 (NEK2) is a serine/threonine kinase that is involved in regulation of centrosome duplication and spindle assembly during mitosis. Dysregulation of these processes causes chromosome instability and aneuploidy, which are hallmark changes of many solid tumors. However, whether aberrant expression of NEK2 is associated with outcome of prostate cancer (PCa) patients remains to be determined. METHODS: Expression of NEK2 in human PCa cells and primary PCa tissues was assessed by quantitative RT-PCR. Expression of NEK2 in human PCa cells was depleted with siRNA. Effects of the depletion on cell proliferation, survival, and tumorigenicity were assessed both in vitro with cell cultures and in vivo with subcutaneous implantation of xenografts. In silico analyses of the online Taylor dataset were carried out to determine whether the expression level of NEK2 correlated with the clinicopathological characteristics of prostate cancer. RESULTS: Compared with benign human prostatic epithelial cells and tissues, the expression of NEK2 was elevated in human PCa cells and primary PCa tissues. Depleting NEK2 expression inhibited human PCa cell proliferation in vitro and xenograft growth in vivo. Expression level of NEK2 in PCa positively correlated with the Gleason score and pathologic stage of the patient. CONCLUSION: The results suggest that overexpression of NEK2 has the potential to serve as a biomarker for PCa prognosis. Further validation with large sample pool is warrant.


Subject(s)
Biomarkers, Tumor/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Aged , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Nude , NIMA-Related Kinases , Prognosis , Reproducibility of Results , Risk Assessment/methods , Sensitivity and Specificity , Up-Regulation
18.
Int J Biol Macromol ; 81: 615-23, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26314905

ABSTRACT

Roles and mechanisms of cell cycle-specific transcription factor E2F1 on prostate cancer (PCa) have not been fully elucidated. To address this problem, we here identified PDZ-binding kinase (PBK) as a direct target for E2F1 through bioinformatics binding site prediction, combined with chromatin immunoprecipitation-PCR (ChIP-PCR), quantitative (Q)-PCR and Western blot analysis. Then, we observed that the knockdown of both E2F1 and PBK could suppress cell proliferation, invasion and migration of PCa cell lines in vitro. Based on Taylor dataset, we found that PBK upregulation occurred more frequently in PCa patients with the older age of patients (P=0.044), the higher Gleason score (P<0.001), the advanced clinical pathological stage (P=0.019), the presence of metastasis (P=0.008), the overall survival (P<0.001) and PSA failure (P=0.004). More interestingly, the survival analysis identified PBK as an independent factor for predicting the biochemical recurrence-free survival of PCa patients (P=0.041). Taken together, these findings offer the convincing evidence for the first time that the overexpression of PBK may lead to high malignant phenotype in PCa cells via the regulation of E2F1. PBK may function as a biomarker that can differentiate patients with biochemical recurrent and non-biochemical recurrent disease following radical prostatectomy, highlighting its potential as a therapeutic target.


Subject(s)
E2F1 Transcription Factor/metabolism , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Aged , Aged, 80 and over , Base Sequence , Binding Sites , Cell Line, Tumor , Cell Movement , Cell Survival , Cytoprotection , Disease Progression , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Nucleotide Motifs , Prognosis , Promoter Regions, Genetic , Prostatic Neoplasms/mortality , Prostatic Neoplasms/pathology , Protein Binding
19.
Int J Clin Exp Med ; 8(3): 4186-94, 2015.
Article in English | MEDLINE | ID: mdl-26064329

ABSTRACT

Dual-specificity phosphatase 5 (DUSP5), which specifically inactivates the extracellular signal-regulated kinase (ERK) 1/2 within the mitogen-activated protein kinase (MAPK) signaling, has recently been considered to be a tumor suppressor. However, its role in prostate cancer is still elusive. In this study, we performed immunohistochemistry analysis on human tissue microarray (TMA) to detect the DUSP5 protein expression pattern. The results indicated that DUSP5 was down-regulated in the human prostate cancer relative to the adjacent benign tissues (IRS: PCa = 4.29 ± 1.72 versus Benign = 4.89 ± 1.58, P = 0.04). In addition, when we linked the DUSP5 protein levels to the clinicopathological features of the patients, we found that the downregulation of DUSP5 was significantly associated with advanced pathological stage (P = 0.004) and high Gleason score (P = 0.009). Moreover, we attempted to validate these findings and investigate the prognostic value of DUSP5 in a publicly available microarray-based Taylor Dataset. Statistic analysis demonstrated that the downregulation of DUSP5 was closely correlated with high Gleason score (P = 0.011), positive metastasis (P < 0.001) and biochemical recurrence (BCR) (P = 0.016). More importantly, Kaplan-Meier analysis revealed that significant differences between patients with high and low DUSP5 expression level in regard to the BCR-free survival of overall (P = 0.009), non-metastatic (P = 0.006) and patients with Gleason score 7 (P = 0.044). Multivariate analysis by Cox regression indicated that DUSP5 could be an independent predictor for the risk of BCR (HR: 0.41, 95% CI: 0.2-0.82; P = 0.012). In summary, our findings disclose that DUSP5 may be an important tumor suppressor that inhibits the progression of PCa. The downregulation of DUSP5 may accurately predict poor prognosis in PCa patients.

20.
Clin Cancer Res ; 21(21): 4922-34, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26080838

ABSTRACT

PURPOSE: To investigate the involvement of hsa-miRNA-195-5p (miR-195) in progression and prognosis of human prostate cancer. EXPERIMENTAL DESIGN: qRT-PCR was performed to detect miR-195 expression in both prostate cancer cell lines and clinical tissue samples. Its clinical significance was statistically analyzed. The roles of miR-195 and its candidate target gene, ribosomal protein S6 kinase, 70 kDa, polypeptide 1 (RPS6KB1) in prostate cancer progression were confirmed on the basis of both in vitro and in vivo systems. RESULTS: miR-195 downregulation in prostate cancer tissues was significantly associated with high Gleason score (P = 0.001), positive metastasis failure (P < 0.001), and biochemical recurrence (BCR, P < 0.001). Survival analysis identified miR-195 as an independent prognostic factor for BCR-free survival of prostate cancer patients (P = 0.022). Then, we confirmed the tumor suppressive role of miR-195 through prostate cancer cell invasion, migration, and apoptosis assays in vitro, along with tumor xenograft growth, angiogenesis, and invasion in vivo according to both gain-of-function and loss-of-function experiments. In addition, RPS6KB1 was identified as a novel direct target of miR-195 through proteomic expression profiling combined with bioinformatic target prediction and luciferase reporter assay. Moreover, the reexpression and knockdown of RPS6KB1 could respectively rescue and imitate the effects induced by miR-195. Importantly, RPS6KB1 expression was closely correlated with aggressive progression and poor prognosis in prostate cancer patients as opposed to miR-195. Furthermore, we identified MMP-9, VEGF, BAD, and E-cadherin as the downstream effectors of miR-195-RPS6KB1 axis. CONCLUSION: The newly identified miR-195-RPS6KB1 axis partially illustrates the molecular mechanism of prostate cancer progression and represents a novel potential therapeutic target for prostate cancer treatment.


Subject(s)
MicroRNAs/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , RNA Interference , Ribosomal Protein S6 Kinases, 70-kDa/genetics , 3' Untranslated Regions , Animals , Apoptosis/genetics , Base Sequence , Binding Sites , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Disease Models, Animal , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Male , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice , MicroRNAs/chemistry , Neovascularization, Pathologic/genetics , Prognosis , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/mortality , Proteomics/methods , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribosomal Protein S6 Kinases, 70-kDa/chemistry , Tumor Burden/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Xenograft Model Antitumor Assays , bcl-Associated Death Protein/genetics , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...