Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 20(2): 518-532, 2025 Feb 01.
Article in English | MEDLINE | ID: mdl-38819064

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202502000-00029/figure1/v/2024-05-28T214302Z/r/image-tiff Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis. Human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) have shown potential for brain injury repair in central nervous system diseases. In this study, we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism. Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits, enhanced blood-brain barrier integrity, and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage. Additionally, hiPSC-NSC-Exos decreased immune cell infiltration, activated astrocytes, and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1, macrophage inflammatory protein-1α, and tumor necrosis factor-α post-intracerebral hemorrhage, thereby improving the inflammatory microenvironment. RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion, thereby improving blood-brain barrier integrity. Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects. In summary, our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity, in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes.

2.
Exp Gerontol ; : 112464, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797288

ABSTRACT

BACKGROUND: Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD. METHODS: To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis. The exploration of potential biological mechanisms involved the utilization of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analysis. Moreover, a bilateral common carotid artery stenosis (BCAS) mouse model of VaD was established, and the expression of the hub gene, its relationship with cognitive function and its potential pathogenic mechanism were verified by cognitive behavior tests, cerebral blood flow measurement, Western blotting, and immunofluorescence experiments. RESULTS: This study identified 293 DEGs from the brain cortex of VaD patients and healthy controls, among these genes, the Toll-like receptor 2 (TLR2) gene was identified as hub gene, and it was associated with the apoptosis-related pathway PI3K/AKT.The BCAS model demonstrated that the use of TLR2 inhibitors greatly enhanced the cognitive function of the mice (p < 0.05). Additionally, there was a notable decrease in the number of apoptotic cells in the brain cortex of the mice (p < 0.01). Moreover, significant alterations in the levels of proteins related to the PI3K/AKT pathway and cleaved-caspase3 proteins were detected (p < 0.05). CONCLUSIONS: TLR2 plays a role in the pathophysiology of VaD by enhancing the neuronal apoptotic pathway, suggesting it could be a promising therapeutic target.

3.
Brain Behav Immun ; 119: 171-187, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38565398

ABSTRACT

Gut microbial homeostasis is crucial for the health of cognition in elderly. Previous study revealed that polysorbate 80 (P80) as a widely used emulsifier in food industries and pharmaceutical formulations could directly alter the human gut microbiota compositions. However, whether long-term exposure to P80 could accelerate age-related cognitive decline via gut-brain axis is still unknown. Accordingly, in this study, we used the senescence accelerated mouse prone 8 (SAMP8) mouse model to investigate the effects of the emulsifier P80 intake (1 % P80 in drinking water for 12 weeks) on gut microbiota and cognitive function. Our results indicated that P80 intake significantly exacerbated cognitive decline in SAMP8 mice, along with increased brain pathological proteins deposition, disruption of the blood-brain barrier and activation of microglia and neurotoxic astrocytes. Besides, P80 intake could also induce gut microbiota dysbiosis, especially the increased abundance of secondary bile acids producing bacteria, such as Ruminococcaceae, Lachnospiraceae, and Clostridium scindens. Moreover, fecal microbiota transplantation from P80 mice into 16-week-old SAMP8 mice could also exacerbated cognitive decline, microglia activation and intestinal barrier impairment. Intriguingly, the alterations of gut microbial composition significantly affected bile acid metabolism profiles after P80 exposure, with markedly elevated levels of deoxycholic acid (DCA) in serum and brain tissue. Mechanically, DCA could activate microglial and promote senescence-associated secretory phenotype production through adenosine triphosphate-binding cassette transporter A1 (ABCA1) importing lysosomal cholesterol. Altogether, the emulsifier P80 accelerated cognitive decline of aging mice by inducing gut dysbiosis, bile acid metabolism alteration, intestinal barrier and blood brain barrier disruption as well as neuroinflammation. This study provides strong evidence that dietary-induced gut microbiota dysbiosis may be a risk factor for age-related cognitive decline.

4.
Behav Brain Res ; 464: 114927, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38428645

ABSTRACT

BACKGROUND: Psychiatric disorders, such as schizophrenia (SCZ), major depressive (MDD), and bipolar disorder (BD) have a profound impact on millions of individuals worldwide. The critical step toward developing effective preventive and treatment strategies lies in comprehending the causal mechanisms behind these diseases and identifying modifiable risk factors associated with them. METHODS: In this study, we conducted a 2-sample Mendelian randomization analysis to explore the potential links between chickenpox(varicella-zoster virus infection) and three major psychiatric disorders(SCZ, MDD, BD). RESULTS: In our MR study, among the three major psychiatric disorders, chickenpox was shown to be causally related to BD, indicating that infection with chickenpox may increase the risk of developing BD (IVW: OR = 1.064, 95% CI =1.025-1.104, P=0.001; RAPS: OR=1.066, 95% CI=1.024-1.110, P=0.002), while there was no causal relationship between SCZ and MDD. Similar estimated causal effects were observed consistently across the various MR models. The robustness of the identified causal relationship between chickenpox and BD holds true regardless of the statistical methods employed, as confirmed by extensive sensitivity analyses that address violations in model assumptions. The MR-Egger regression test failed to reveal any signs of directional pleiotropy (intercept = -0.042, standard error (SE) = 0.029, p = 0.236). Similarly, the MR-PRESSO analysis revealed no evidence of directional pleiotropy or outliers among the chickenpox-related instrumental variables (global test p = 0.653). Furthermore, a leave-one-out sensitivity analysis yielded consistent results, further underscoring the credibility and stability of the causal relationship. CONCLUSIONS: Our findings provide compelling evidence of a causal effect of chickenpox on the risk of BD. To gain a more comprehensive understanding of this association and its underlying mechanisms, additional research is needed. Such investigations are pivotal in identifying effective interventions for promoting BD prevention.


Subject(s)
Chickenpox , Depressive Disorder, Major , Mental Disorders , Humans , Herpesvirus 3, Human/genetics , Chickenpox/epidemiology , Depressive Disorder, Major/genetics , Mendelian Randomization Analysis , Genome-Wide Association Study
5.
Neural Regen Res ; 19(9): 2010-2018, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227530

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00033/figure1/v/2024-01-16T170235Z/r/image-tiff We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury. However, its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear. In this study, we first used an HT22 scratch injury model to mimic traumatic brain injury, then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p. We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress. Furthermore, luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α, while an IRE1α functional salvage experiment confirmed that miR-124-3p targeted IRE1α and reduced its expression, thereby inhibiting endoplasmic reticulum stress in injured neurons. Finally, we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced. These findings suggest that, after repetitive mild traumatic brain injury, miR-124-3 can be transferred from microglia-derived exosomes to injured neurons, where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress. Therefore, microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.

6.
Biol Direct ; 18(1): 29, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37312196

ABSTRACT

Intermittent hypoxia is the best predictor of developing cognitive decline and Alzheimer's disease progression in patients with obstructive sleep apnea. The nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome has been poorly studied as a regulator of neuroinflammation in cognitive impairment caused by intermittent hypoxia. As critical inflammatory cells, exosomes secreted by microglia have been found to affect the spread of pathologic proteins and neuropathology in neurodegenerative diseases. However, the effects of microglial exosomes on neuroinflammation and cognitive outcomes after intermittent hypoxia remain unclear. In this study, the role of miRNAs in microglial exosomes in improving cognitive deficits in mice exposed to intermittent hypoxia was investigated. We demonstrated that miR-146a-5p fluctuated over time in microglial exosomes of mice exposed to intermittent hypoxia for different periods of time, which could regulate neuronal NLRP3 inflammasome and neuroinflammation. In primary neurons, we found that miR-146a-5p regulated mitochondrial reactive oxygen species by targeting HIF1α, thus affecting the NLRP3 inflammasome and secretion of inflammatory factors. Similarly, further studies showed that inhibition of NLRP3 by administering overexpressed miR-146a-5p in microglial exosomes and MCC950 has improved neuroinflammation and cognitive dysfunction in mice after intermittent hypoxia. In conclusion, NLRP3 inflammasome may be a regulatory target for ameliorating cognitive impairment caused by intermittent hypoxia, and microglial exosomal miR-146a-5p may be a promising therapeutic strategy.


Subject(s)
Cognitive Dysfunction , Exosomes , MicroRNAs , Animals , Mice , Inflammasomes , Microglia , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Neuroinflammatory Diseases , Cognitive Dysfunction/etiology , Hypoxia , MicroRNAs/genetics , Cognition
7.
Brain Sci ; 13(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37190604

ABSTRACT

Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells. They have also been regarded as a promising therapeutic tool in translational medicine, with low immunogenicity, high penetration through the blood-brain barrier, and ease of modification. In our previous research, we have found that exogenous administration of miRNA-124-overexpressed microglial exosomes (Exo-124) are effective in improving post-injury cognitive impairment. From this, we evaluated the potential therapeutic effects of miRNA-124-enriched microglial exosomes on the ICH mice in the present study. We found that the gene-edited exosomes could attenuate neuro-deficits and brain edema, improve blood-brain barrier integrity, and reduce neural cell death. Moreover, the protective effect of Exo-124 was abolished in mice depleted of Gr-1+ myeloid cells. It suggested that the exosomes exerted their functions by limiting the infiltration of leukocyte into the brain, thus controlling neuroinflammation following the onset of ICH. In conclusion, our findings provided a promising therapeutic strategy for improving neuroinflammation in ICH. It also opens a new avenue for intranasal delivery of exosome therapy using miRNA-edited microglial exosomes.

8.
J Neuroinflammation ; 19(1): 185, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836233

ABSTRACT

The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Cognitive Dysfunction , Ferroptosis , Mesenchymal Stem Cells , Brain Concussion/pathology , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/therapy , Cognition , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Humans
9.
Front Neurosci ; 16: 816752, 2022.
Article in English | MEDLINE | ID: mdl-35310096

ABSTRACT

Sleep deprivation (SD) induces systemic inflammation that promotes neuronal pyroptosis. The purpose of this study was to investigate the effect of an antioxidant modafinil on neuronal pyroptosis and cognitive decline following SD. Using a mouse model of SD, we found that modafinil improved learning and memory, reduced proinflammatory factor (IL-1ß, TNF-α, and IL-6) production, and increased the expression of anti-inflammatory factors (IL-10). Modafinil treatment attenuated inflammasome activity and reduced neuronal pyroptosis involving the NLRP3/NLRP1/NLRC4-caspase-1-IL-1ß pathway. In addition, modafinil induced an upregulation of brain-derived neurotrophic factor (BDNF) and synaptic activity. These results suggest that modafinil reduces neuronal pyroptosis and cognitive decline following SD. These effects should be further investigated in future studies to benefit patients with sleep disorders.

10.
Front Cell Neurosci ; 16: 832140, 2022.
Article in English | MEDLINE | ID: mdl-35153676

ABSTRACT

BACKGROUND: Repetitive mild traumatic brain injury (rmTBI) is closely associated with chronic traumatic encephalopathy (CTE). Neuroinflammation and neuropathological protein accumulation are key links to CTE progression. Exosomes play important roles in neuroinflammation and neuropathological protein accumulation and spread. Here, we explored the role of brain-derived exosomes (BDEs) in mice with rmTBI and how the inhibition of BDE release contributes to neuroprotection. METHODS: GW4869 was used to inhibit exosome release, and behavioural tests, PET/CT and western blotting were conducted to explore the impact of this inhibition from different perspectives. We further evaluated cytokine expression by Luminex and microglial activation by immunofluorescence in mice with rmTBI after exosome release inhibition. RESULTS: Inhibition of BDE release reversed cognitive impairment in mice with rmTBI, enhanced glucose uptake and decreased neuropathological protein expression. Inhibition of BDE release also changed cytokine production trends and enhanced microglial proliferation. CONCLUSION: In this study, we found that BDEs are key factor in cognitive impairment in mice with rmTBI and that microglia are the main target of BDEs. Thus, inhibition of exosome release may be a new strategy for improving CTE prognoses.

11.
Cell Death Dis ; 13(1): 33, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013119

ABSTRACT

Aged microglia display augmented inflammatory activity after neural injury. Although aging is a risk factor for poor outcome after brain insults, the precise impact of aging-related alterations in microglia on neural injury remains poorly understood. Microglia can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Upon withdrawal of CSF1R inhibitors, microglia rapidly repopulate the entire brain, leading to replacement of the microglial compartment. In this study, we investigated the impact of microglial replacement in the aged brain on neural injury using a mouse model of intracerebral hemorrhage (ICH) induced by collagenase injection. We found that replacement of microglia in the aged brain reduced neurological deficits and brain edema after ICH. Microglial replacement-induced attenuation of ICH injury was accompanied with alleviated blood-brain barrier disruption and leukocyte infiltration. Notably, newly repopulated microglia had reduced expression of IL-1ß, TNF-α and CD86, and upregulation of CD206 in response to ICH. Our findings suggest that replacement of microglia in the aged brain restricts neuroinflammation and brain injury following ICH.


Subject(s)
Aging/drug effects , Brain/drug effects , Cerebral Hemorrhage/drug therapy , Microglia/drug effects , Neuroinflammatory Diseases/drug therapy , Aging/pathology , Aminopyridines/administration & dosage , Aminopyridines/pharmacology , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Brain/immunology , Brain/pathology , Brain Injuries/drug therapy , Brain Injuries/etiology , Brain Injuries/immunology , Brain Injuries/pathology , Cell Death/drug effects , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Chemotaxis, Leukocyte/drug effects , Disease Models, Animal , Mice , Microglia/immunology , Microglia/pathology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/pathology , Pyrroles/administration & dosage , Pyrroles/pharmacology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors
12.
Histol Histopathol ; 37(2): 159-168, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34897628

ABSTRACT

Traumatic brain injury (TBI) can cause the pathological disruption of the blood-brain barrier (BBB) and associated neurological injury. Reducing the severity of such barrier disruption following TBI can decrease the degree of brain edema, suppress intracranial inflammation, and thereby protect against neurological damage. The BBB is made up of brain microvascular endothelial cells (BMVECs), neurons, pericytes, astrocytes, and extracellular matrix components. In prior analyses, we have demonstrated that miR-124-3p expression is enhanced in microglia-derived exosomes following TBI, with this miRNA being capable of promoting neural repair after such injury. Based upon these results, the present study was formulated to examine the impact of miR-124-3p on BMVEC function and to evaluatethe mechanistic basis for its activity by overexpressing miR-124-3p in these endothelial cells. We utilized a bEnd.3 cell scratch wound in vitro model to simulate TBI-associated brain microvascular endothelial cell injury. Lipofectamine3000 was used to transfect endothelial cells such that they overexpressed miR-124-3p. Fluorescence microscopy was used to observe the effects of miR-124-3p expression on these endothelial cells. TUNEL+CD31 immunofluorescence stainingwas employed to observe endothelial cell apoptosis. Tight junctions were observed via ionconductivity microscopy. Western blotting was used to detect the expression of tight junction proteins (occludin, ZO-1), autophagy-associated proteins (Beclin-1, p62, LC3-II/LC3-I), and mTOR-associated proteins (p-mTOR, PDE4B). Chloroquine was used to treat these injured endothelial cells overexpressing miR-124-3p, and endothelial cell apoptosis was assessed via TUNEL+CD31 immunofluorescence staining. We found that the upregulation of miR-124-3p was sufficient to suppress bEnd.3 cell apoptotic death following in vitro scratch injury while promoting the upregulation of the tight junction proteins ZO-1 and occludin in these cells, thereby reducing the degree of leakage across the cerebral microvascular endothelial barrier. These protective effects may be related to the ability of miR-124-3p to suppress mTOR signaling and to induce autophagic activity within BMVECs. These data support a model wherein miR-124-3p can inhibit mTOR signaling and promote autophagic induction in BMVECs, thereby protecting these cells against TBI-induced damage.


Subject(s)
Brain Injuries , MicroRNAs , Autophagy , Blood-Brain Barrier/metabolism , Brain/pathology , Brain Injuries/metabolism , Endothelial Cells/pathology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism
13.
Front Cell Neurosci ; 15: 695479, 2021.
Article in English | MEDLINE | ID: mdl-34349624

ABSTRACT

Amyloid-ß (Aß) is the predominant pathologic protein in Alzheimer's disease (AD). The production and deposition of Aß are important factors affecting AD progression and prognosis. The deposition of neurotoxic Aß contributes to damage of the blood-brain barrier. However, the BBB is also crucial in maintaining the normal metabolism of Aß, and dysfunction of the BBB aggravates Aß deposition. This review characterizes Aß deposition and BBB damage in AD, summarizes their interactions, and details their respective mechanisms.

14.
Neurol Res ; 42(6): 487-496, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32292127

ABSTRACT

Objective:Traumatic brain injury (TBI) is one of the most serious public health problems in the world. Hydrogen (H2), a flammable, colorless, and odorless gas, has been observed to have preventive and therapeutic effects on brain trauma and other neurological disorders, but its exact mechanism has not been fully clarified.Methods: To further study the mechanism underlying the role of hydrogen gas in alleviating BBB damage after TBI, we performed the scratch injury model on cultured brain microvascular endothelial cells (bEnd.3), which formed the microvascular endothelial barrier - an integral part of the highly specialized BBB.Results: In the case of TBI, hydrogen was able to improve the decline of cell viability induced by TBI. More importantly, inhibition of PI3 K/Akt/GSK3ß signal pathway or activation of autophagy reduced the protective effect of hydrogen on cell viability, indicating that such protective effect was regulated by PI3 K/Akt/GSK3ß signal pathway and was related to the inhibition of autophagy.Conclusion: So we concluded that hydrogen improved the cell viability in a microvascular endothelial cell model of TBI partly through inhibition of autophagy, and inhibitory effect of hydrogen on autophagy was exerted by activating PI3 K/Akt/GSK3ß signal pathway. These findings enriched our knowledge about the mechanism of hydrogen therapy against TBI.


Subject(s)
Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/pathology , Hydrogen/pharmacology , Neuroprotective Agents/pharmacology , Animals , Autophagy/drug effects , Blood-Brain Barrier/pathology , Cell Line , Cell Survival/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Mice , Oncogene Protein v-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects
15.
J Cell Mol Med ; 24(7): 4061-4071, 2020 04.
Article in English | MEDLINE | ID: mdl-32108985

ABSTRACT

Few studies have explored the effect of hydrogen on neuronal apoptosis or impaired nerve regeneration after traumatic brain injury, and the mechanisms involved in these processes are unclear. In this study, we explored neuroprotection of hydrogen-rich medium through activation of the miR-21/PI3K/AKT/GSK-3ß pathway in an in vitro model of traumatic brain injury. Such model adopted PC12 cells with manual scratching. Then, injured cells were cultured in hydrogen-rich medium for 48 hours. Expression of miR-21, p-PI3K, p-Akt, p-GSK-3ß, Bax and Bcl-2 was measured using RT-qPCR, Western blot analysis and immunofluorescence staining. Rate of apoptosis was determined using TUNEL staining. Neuronal regeneration was assessed using immunofluorescence staining. The results showed that hydrogen-rich medium improved neurite regeneration and inhibited apoptosis in the injured cells. Scratch injury was accompanied by up-regulation of miR-21, p-PI3K, p-Akt and p-GSK-3ß. A miR-21 antagomir inhibited the expression of these four molecules, while a PI3K blocker only affected the three proteins and not miR-21. Both the miR-21 antagomir and PI3K blocker reversed the protective effect of hydrogen. In conclusion, hydrogen exerted a neuroprotective effect against neuronal apoptosis and impaired nerve regeneration through activation of miR-21/PI3K/AKT/GSK-3ß signalling in this in vitro model of traumatic brain injury.


Subject(s)
Antagomirs/pharmacology , Brain Injuries, Traumatic/drug therapy , Glycogen Synthase Kinase 3 beta/genetics , MicroRNAs/genetics , Animals , Apoptosis/drug effects , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Gene Expression Regulation/drug effects , Humans , Hydrogen/chemistry , Hydrogen/pharmacology , In Vitro Techniques , MicroRNAs/antagonists & inhibitors , Neurons/drug effects , Neuroprotection/genetics , Neuroprotective Agents/pharmacology , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Signal Transduction/drug effects
17.
Brain Behav Immun ; 83: 270-282, 2020 01.
Article in English | MEDLINE | ID: mdl-31707083

ABSTRACT

BACKGROUND: Neuroinflammation is a characteristic pathological change of acute neurological deficit and chronic traumatic encephalopathy (CTE) after traumatic brain injury (TBI). Microglia are the key cell involved in neuroinflammation and neuronal injury. The type of microglia polarization determines the direction of neuroinflammation. MiR-21-5p elevated in neurons and microglia after TBI in our previous research. In this study, we explore the influence of miR-21-5p for neuroinflammation by regulating microglia polarization. METHODS: In this study, PC12 and BV2 used to instead of neuron and microglia respectively. The co-cultured transwell system used to simulate interaction of PC12 and BV2 cells in vivo environment. RESULTS: We found that PC12-derived exosomes with containing miR-21-5p were phagocytosed by microglia and induced microglia polarization, meanwhile, the expression of miR-21-5p was increased in M1 microglia cells. Polarization of M1 microglia aggravated the release of neuroinflammation factors, inhibited the neurite outgrowth, increased accumulation of P-tau and promoted the apoptosis of PC12 cells, which formed a model of cyclic cumulative damage. Simultaneously, we also got similar results in vivo experiments. CONCLUSIONS: PC12-derived exosomes with containing miR-21-5p is the essential of this cyclic cumulative damage model. Therefore, regulating the expression of miR-21-5p or the secretion of exosomes may be an important novel strategy for the treatment of neuroinflammation after TBI.


Subject(s)
Cell Differentiation , Exosomes/genetics , MicroRNAs/genetics , Microglia/cytology , Neurons/cytology , Animals , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Coculture Techniques , Exosomes/metabolism , Inflammation/genetics , Inflammation/pathology , Male , Mice , PC12 Cells , Rats
18.
Neurochem Res ; 44(8): 1903-1923, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31190315

ABSTRACT

In our recent study, we observed consistent increases in miR-124-3p levels in exosomes derived from cultured BV2 microglia which was treated with repetitive traumatic brain injury (rTBI) mouse model brain extracts. To clarify the mechanisms underlying increases in microglia-derived exosomal miR-124-3p and their role in regulating neuronal autophagy after TBI, we investigated the impact of exosomal miR-124-3p on neuronal autophagy in scratch-injured HT22 neurons and rTBI mice. We harvested injured brain extracts from rTBI mice at 3 to 21 days post injury (DPI) for the treatment of cultured BV2 microglia in vitro. We observed significant induction of autophagy following TBI in vitro, and that inhibition of activated neuronal autophagy could protect against trauma-induced injury. Our results indicated that co-culture of injured HT22 neurons with miR-124-3p overexpressing BV2 microglia exerted a protective effect by inhibiting neuronal autophagy in scratch-injured neurons. Further research revealed that these effects were achieved mainly via upregulation of exosomal miR-124-3p, and that Focal adhesion kinase family-interacting protein of 200 kDa (FIP200) plays a key role in trauma-induced autophagy. Injection of exosomes into the vena caudalis in in vivo experiments revealed that exosomal miR-124-3p was associated with decreases in the modified neurological severity score (mNSS) and improvements in Morris water maze (MWM) test results in rTBI mice. Altogether, our results indicate that increased miR-124-3p in microglial exosomes following TBI may inhibit neuronal autophagy and protect against nerve injury via their transfer into neurons. Thus, treatment with microglial exosomes enriched with miR-124-3p may represent a novel therapeutic strategy for the treatment of nerve injury after TBI.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/physiology , Brain Injuries, Traumatic/pathology , Exosomes/metabolism , MicroRNAs/metabolism , Microglia/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Cell Line , Male , Mice, Inbred C57BL , Neurons/metabolism
19.
Med Sci Monit ; 25: 1871-1885, 2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30860987

ABSTRACT

BACKGROUND Traumatic brain injury (TBI) produces a series of pathological processes. Recent studies have indicated that autophagy pathway is persistently activated after TBI, which may lead to deterioration of nerve injury. Our preliminary work found miR-21-5p was upregulated in both in vivo and in vitro TBI models. MicroRNAs (miRNAs) could be loaded into exosomes to perform cell-to-cell interactions. This research aimed to evaluate the therapeutic effect of neuron-derived exosomes enriched with miR-21-5p on the TBI in vitro and to further explore the possible mechanisms. MATERIAL AND METHODS Brain extracts harvested from an rTBI mouse model were added to cultured HT-22 neurons to imitate the microenvironment of injured brain on in vitro cultured cells. Ultracentrifugation was performed to isolate exosomes. Transmission electron microscopy and Nano sight technology were used to examine exosomes. An in vitro model of TBI was established to study the effect of exosomal miR-21-5p on nerve injury and on neuronal autophagy regulation. RESULTS The expression of miR-21-5p was increased in exosomes derived from HT-22 neurons after treatment with rTBI mouse brain extracts. Autophagy was activated in HT-22 neurons after scratch injury. Exosomal miR-21-5p produced a protective effect by suppressing autophagy in a TBI model in vitro. MiR-21-5p could directly target the Rab11a 3'UTR region to reduce its translation and further suppressed Rab11a-mediated neuronal autophagy. CONCLUSIONS The levels of miR-21-5p in neuronal exosomes increased from the acute to the chronic phase of TBI. Neuronal exosomes enriched with miR-21-5p can inhibit the activity of neuronal autophagy by targeting Rab11a, thus attenuating trauma-induced, autophagy-mediated nerve injury in vitro.


Subject(s)
Brain Injuries, Traumatic/genetics , MicroRNAs/genetics , MicroRNAs/physiology , Animals , Autophagy/genetics , Autophagy/physiology , Brain/pathology , Brain Injuries, Traumatic/physiopathology , Cells, Cultured , Disease Models, Animal , Exosomes/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/metabolism , Neurons/metabolism , Neurons/physiology , Neuroprotection/drug effects , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/physiology
20.
J Neurotrauma ; 36(8): 1291-1305, 2019 04 15.
Article in English | MEDLINE | ID: mdl-29695199

ABSTRACT

Our recent articles have reported that increased miR-21-5p in brain after traumatic brain injury (TBI) could improve the neurological outcome through alleviating blood-brain barrier (BBB) damage. miR-21-3p is another mature miRNA derived from pre-miR-21 after Dicer Procession other than miR-21-5p. Its roles in various diseases, such as tumors and myocardial disease, aroused great interest for research in recent years. To further explore the function and underlying mechanism of miR-21, especially miR-21-3p, in regulating the pathological development of BBB damage after TBI, we designed this research and focused on studying the impact of miR-21-3p on apoptosis and inflammation in brain microvascular endothelial cells (BMVECs), the major cellular component of BBB. We performed controlled cortical impact on mouse brain and employed the oxygen glucose deprivation/reoxygenation (OGD)-treated bEnd.3 cells injury model. We found that the miR-21-3p level in BMVECs from injured cerebral cortex of controlled cortical impact (CCI) mice and bEnd.3 cells with OGD treatment were both increased after injury. For in vitro experiments, downregulation on the miR-21-3p level by transfecting miR-21-3p antagomir in cultured cells alleviated OGD-induced BBB damage, characterized by decreased BBB leakage and increased expression of tight junction proteins. Besides, miR-21-3p antagomir could suppress cell death by anti-apoptosis and control inflammatory response by inhibiting the activity of NF-κB signaling. Using luciferase reporter assay and a MAT2B-silenced shRNA vector, we further proved that miR-21-3p exerted the above functions through targeting MAT2B. In addition, in vivo experiments also confirmed that intracerebroventricular infusion of miR-21-3p antagomir could alleviate BBB leakage after TBI. It reduced Evans Blue extravasation and promoted the expression of tight junction proteins, thus contributed to improve the neurological outcome of CCI mice. Taken together, increased miR-21-3p in BMVECs after TBI was bad for restoration of injured BBB. Downregulation on the miR-21-3p level in injured brain could be a promising therapeutic strategy for BBB damage after TBI.


Subject(s)
Blood-Brain Barrier/pathology , Brain Injuries, Traumatic/pathology , Endothelial Cells/pathology , Methionine Adenosyltransferase/metabolism , MicroRNAs/metabolism , Animals , Apoptosis/physiology , Blood-Brain Barrier/metabolism , Brain Injuries, Traumatic/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation/physiology , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...