Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(31): 9507-9517, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35878884

ABSTRACT

The capture and elimination of anions and cations from water have attracted a great deal of attention and are quite vital for clean production and environmental remediation. In this work, we present the synthesis of four porphyrin (Por)-based conjugated microporous polymers (CMPs, namely, Por-CMP-1-4), which were produced through a Sonogashira-Hagihara linked response using porphyrin and acetylene aromatic compounds as building blocks and used as absorbents to eliminate metal ions from water. The as-synthesized Por-CMP-1-4 exhibit an amorphous porous structure and outstanding caloric and physicochemical properties. Taking advantage of their larger specific surface areas, i.e., 541.47, 614.58, 382.38, and 677.90 m2 g-1 for Por-CMP-1-4, respectively, and their chelating active site that originated from the porphyrin ring, Por-CMP-1-4 show better Zn2+, Cu2+, and Pb2+ adsorption ability. Among them, Por-CMP-3 has the greatest adsorbability of 640 mg g-1 for Zn2+, with an adsorption efficiency of 80%, whereas its adsorption capacities for Cu2+ and Pb2+ ions were both 334 mg g-1, with an adsorption efficiency of 42% for Cu2+ and Pb2+. Employing Por-CMP-3 as a representative example, its adsorption kinetics has been systematically investigated. The adsorption behavior of Por-CMP-3 with respect to the Zn2+ ion is shown to exhibit pseudo-first-order kinetics and Langmuir isotherm modes. Meanwhile, the adsorption mechanism is discussed in detail, and it was thought it might be chelation, in which the nitrogen atoms with a single pair of electrons on the porphyrin ring interacted with metal ions to form stable chelation coordination bonds, thus removing metal ions selectively and effectively. Furthermore, Por-CMP-3 exhibited good reusability, retaining 60% of its Zn2+ removal rate after four continuous adsorptions.

3.
J Hazard Mater ; 392: 122359, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32113088

ABSTRACT

Inorganic membranes in wastewater treatment have captured increasing attention due to their numerous advantages. However, high cost and complicated producing process restricted their benign developments. This study proposed an novel inorganic geopolymer-zeolite composite membrane which was synthesized by using circulating fluidized bed fly ash (CFBFA) solid waste as initial material and via a low-cost and facile geopolymerization-hydrothermal treatment processes, further, the membrane was employed to separate Cr(VI) ion from aqueous solutions. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra results indicated that geopolymer-zeolite (Li-ABW) composite membrane was obtained successfully. Field emission scanning electron microscopy (FESEM) results demonstrated that the membrane had a compact zeolite layer with thickness about 1.5 µm. The effects of transmembrane pressures (TMP), Cr(VI) concentration, pH, ionic strength, and co-existing ions on Cr(VI) rejection were investigated, and the results revealed that the Cr(VI) rejection reached 85.45 % under 10 kPa of TMP, 1000 mg L-1 of Cr(VI), and pH 7. The separation mechanism of Cr(VI) on the geopolymer-zeolite composite membrane was considered to be size exclusion and electrostatic interaction. These results suggested that the geopolymer-zeolite composite membrane had a potential application for the effective removal of Cr(VI) contaminants from wastewater.

SELECTION OF CITATIONS
SEARCH DETAIL
...