Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMB Rep ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38919016

ABSTRACT

Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis.

2.
Mol Biol Rep ; 51(1): 680, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796595

ABSTRACT

Menstrual blood-derived endometrial stem cells (MenSCs) have attracted increasing interest due to their excellent safety, and lack of ethical dilemma as well as their ability to be periodically obtained in a noninvasive manner. However, although preclinical research as shown the therapeutic potential of MenSCs in several diseases, their poor cell survival and low engraftment at disease sites reduce their clinical efficacy. Flotillins (including Flot1 and Flot2) are implicated in various cellular processes, such as vesicular trafficking, signal transduction, cell proliferation, migration and apoptosis. In this study, we aimed to determine the effects of Flotillins on MenSCs survival, proliferation and migration. Our experimental results show that MenSCs were modified to overexpress Flot1 and/or Flot2 without altering their intrinsic characteristics. Flot1 and Flot2 co-overexpression promoted MenSC viability and proliferation capacity. Moreover, Flot1 or Flot2 overexpression significantly promoted the migration and inhibited the apoptosis of MenSCs compared with the negative control group, and these effects were stronger in the Flot1 and Flot2 gene co-overexpression group. However, these effects were significantly reversed after Flot1 and/or Flot2 knockdown. In conclusion, our results indicate that Flot1 and Flot2 overexpression in MenSCs improved their proliferation and migration and inhibited their apoptosis, and this might be an effective approach to improve the efficiency of cell-based therapies.


Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Cell Survival , Membrane Proteins , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Endometrium/cytology , Endometrium/metabolism , Stem Cells/metabolism , Stem Cells/cytology , Cells, Cultured , Signal Transduction
3.
Front Plant Sci ; 12: 748487, 2021.
Article in English | MEDLINE | ID: mdl-34759942

ABSTRACT

In this study, we performed the first nuclear proteome analysis of wheat developing grains under water deficit by using a label-free based quantitative proteomic approach. In total, we identified 625 unique proteins as differentially accumulated proteins (DAPs), of which 398 DAPs were predicted to be localized in nucleus. Under water deficit, 146 DAPs were up-regulated and mainly involved in the stress response and oxidation-reduction process, while 252 were down-regulated and mainly participated in translation, the cellular amino metabolic process, and the oxidation-reduction process. The cis-acting elements analysis of the key nuclear DAPs encoding genes demonstrated that most of these genes contained the same cis-acting elements in the promoter region, mainly including ABRE involved in abscisic acid response, antioxidant response element, MYB responsive to drought regulation and MYC responsive to early drought. The cis-acting elements related to environmental stress and hormones response were relatively abundant. The transcription expression profiling of the nuclear up-regulated DAPs encoding genes under different organs, developmental stages and abiotic stresses was further detected by RNA-seq and Real-time quantitative polymerase chain reaction, and more than 50% of these genes showed consistency between transcription and translation expression. Finally, we proposed a putative synergistic responsive network of wheat nuclear proteome to water deficit, revealing the underlying mechanisms of wheat grain nuclear proteome in response to water deficit.

4.
BMC Genomics ; 20(1): 101, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30709338

ABSTRACT

BACKGROUND: Expansin loosens plant cell walls and involves in cell enlargement and various abiotic stresses. Plant expansin superfamily contains four subfamilies: α-expansin (EXPA), ß-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). In this work, we performed a comprehensive study on the molecular characterization, phylogenetic relationship and expression profiling of common wheat (Triticum aestivum) expansin gene family using the recently released wheat genome database (IWGSC RefSeq v1.1 with a coverage rate of 94%). RESULTS: Genome-wide analysis identified 241 expansin genes in the wheat genome, which were grouped into three subfamilies (EXPA, EXPB and EXLA) by phylogenetic tree. Molecular structure analysis showed that wheat expansin gene family showed high evolutionary conservation although some differences were present in different subfamilies. Some key amino acid sites that contribute to functional divergence, positive selection, and coevolution were detected. Evolutionary analysis revealed that wheat expansin gene superfamily underwent strong positive selection. The transcriptome map and qRT-PCR analysis found that wheat expansin genes had tissue/organ expression specificity and preference, and generally highly expressed in the roots. The expression levels of some expansin genes were significantly induced by NaCl and polyethylene glycol stresses, which was consistent with the differential distribution of the cis-elements in the promoter region. CONCLUSIONS: Wheat expansin gene family showed high evolutionary conservation and wide range of functional divergence. Different selection constraints may influence the evolution of the three expansin subfamilies. The different expression patterns demonstrated that expansin genes could play important roles in plant growth and abiotic stress responses. This study provides new insights into the structures, evolution and functions of wheat expansin gene family.


Subject(s)
Gene Expression Regulation, Plant , Genome, Plant , Multigene Family , Plant Proteins/metabolism , Transcriptome , Triticum/genetics , Evolution, Molecular , Gene Expression Profiling , Phylogeny , Plant Proteins/genetics , Stress, Physiological , Triticum/growth & development , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...