Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Commun Signal ; 18(2): e12021, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38946718

ABSTRACT

lncRNA ZFAS1 was identified to facilitate thyroid cancer, but its role in medullary thyroid carcinoma (MTC) remains unknown. This study aimed to unravel the potential function of this lncRNA in MTC by investigating the involvement of the lncRNA ZFAS1 in a ceRNA network that regulates MTC invasion. Proliferation, invasion, and migration of cells were evaluated using EdU staining and Transwell assays. Immunoprecipitation (IP) assays, dual-fluorescence reporter, and RNA IP assays were employed to examine the binding interaction among genes. Nude mice were used to explore the role of lncRNA ZFAS1 in MTC in vivo. ZFAS1 and EPAS1 were upregulated in MTC. Silencing ZFAS1 inhibited MTC cell proliferation and invasion under hypoxic conditions, which reduced EPAS1 protein levels. UCHL1 knockdown increased EPAS1 ubiquitination. ZFAS1 positively regulated UCHL1 expression by binding to miR-214-3p. Finally, silencing ZFAS1 significantly repressed tumor formation and metastasis in MTC. LncRNA ZFAS1 promotes invasion of MTC by upregulating EPAS1 expression via the miR-214-3p/UCHL1 axis.

2.
Scanning ; 2021: 8231559, 2021.
Article in English | MEDLINE | ID: mdl-34497680

ABSTRACT

BACKGROUND: Expression of cholecystokinin is found in myocardial tissues as a gastrointestinal hormone and may be involved in cardiovascular regulation. However, it is unclear whether there is an increase in cholecystokinin expression in myocardial hypertrophy progression induced by abdominal aortic constriction. The study is aimed at exploring the relationship between cholecystokinin expression and myocardial hypertrophy. METHODS: We randomly divided the 70 Sprague-Dawley rats into two groups: the sham operation group and the abdominal aortic constriction group. The hearts of rats were measured by echocardiography, and myocardial tissues and blood were collected at 4 weeks, 8 weeks, and 12 weeks after surgery. Morphological changes were assessed by microscopy. The cholecystokinin expression was evaluated by immunochemistry, Western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. RESULTS: The relative protein levels of cholecystokinin were significantly increased in the abdominal aortic constriction groups compared with the corresponding sham operation groups at 8 weeks and 12 weeks. The cholecystokinin mRNA in the abdominal aortic constriction groups was significantly higher than the time-matched sham operation groups. Changes in the left ventricular wall thickness were positively correlated with the relative protein levels of cholecystokinin and the mRNA of cholecystokinin. CONCLUSIONS: The development of myocardial hypertrophy can affect the cholecystokinin expression of myocardial tissues.


Subject(s)
Cholecystokinin , Myocardium , Animals , Hypertrophy , Random Allocation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...